Question #75299, Math / Other

find the minimum number of intervals required to evaluate integration 0 to 1 e $^-x^2$ dx with an accuracy of $1/2 \times 10^-4$ by using trapezoidal rule

Answer.

$$|\varepsilon| \leq \frac{(b-a)^3}{12N^2} \max_{a \leq x \leq b} f''(x).$$

$$a = 0, b = 1.$$

$$f(x) = e^{-x^2}$$
, $f'(x) = -2xe^{-x^2}$, $f''(x) = (4x^2 - 2)e^{-x^2}$.

$$\max_{0 \le x \le 1} f''(x) = f''(1) = \frac{2}{e} \approx 0.7358.$$

So,
$$0.5 \times 10^{-4} \le \frac{0.7358}{12N^2} \rightarrow N \ge \sqrt{\frac{0.7358}{12*0.5 \times 10^{-4}}} \approx 35.$$

Answer provided by https://www.AssignmentExpert.com