A transmission line with characteristic impedance 250Ω is connected to a pure resistive load of 1000Ω through a $\lambda / 4$ line segment. Calculate the characteristic impedance of this segment to achieve perfect matching between the load and the transmission line.

Solution: input impedance of transmission line:

$$
\begin{gathered}
Z_{\text {in }}(l)=Z_{0} \frac{Z_{L}+Z_{0} \cdot \tanh (\gamma l)}{Z_{0}+Z_{L} \cdot \tanh (\gamma l)} \\
Z_{0}=250-\text { characteristic impedance } \\
Z_{L}=1000-\text { load resistance } \\
\gamma-\text { propagation constant } \\
l-\text { length of transmission line }
\end{gathered}
$$

input impedance of lossless transmission line:

$$
\begin{gathered}
Z_{\text {in }}(l)=Z_{0} \frac{Z_{L}+j \cdot Z_{0} \cdot \tan (\beta l)}{Z_{0}+j \cdot Z_{L} \cdot \tan (\beta l)} \\
\beta=\frac{2 \pi}{\lambda}-\text { wavenumber }
\end{gathered}
$$

for $\lambda / 4$ line segment:

$$
Z=\frac{Z_{0}^{2}}{Z_{L}}=\frac{250^{2}}{1000}=62.5 \Omega
$$

Answer: $Z=62.5 \Omega$
Answer provided by https://www.AssignmentExpert.com

