Answer on Question \#74504 - Math - Calculus

Given: $f(x)=\left\{\begin{array}{l}3-k x ; 1 \leq x<2 \\ \frac{x^{2}}{4}-3 ; x \geq 2\end{array}\right.$
To Find: Find the value of " k " so that the function is continuous at $\mathrm{x}=2 \mathrm{by}$ using definition.
Solution: The given function is $f(x)=\left\{\begin{array}{l}3-k x ; 1 \leq x<2 \\ \frac{x^{2}}{4}-3 ; x \geq 2\end{array}\right.$
The given function is continuous in $[1,2)$ and in $[2, \infty)$, since in both interval function is a polynomial and polynomials are continuous everywhere. Now, we have to check continuity at $\mathrm{x}=2$, if function is continuous at $\mathrm{x}=2$ then it is continuous everywhere.

For continuity, we have

$$
L H L=R H L
$$

$$
\begin{aligned}
\therefore L H L & =\lim _{x \rightarrow 2^{+}} f(x) \\
& =\lim _{x \rightarrow 2^{+}}\left(\frac{x^{2}}{4}-3\right) \\
& =\left(\frac{2^{2}}{4}-3\right)=-2
\end{aligned}
$$

$\& R H L=\lim _{x \rightarrow 2^{-}} f(x)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2^{-}}(3-k x) \\
& =(3-2 k)
\end{aligned}
$$

Hence $\quad(3-2 k)=-2$

$$
\Rightarrow \quad-2 k=-5
$$

$$
\Rightarrow \quad k=5 / 2
$$

So, for $k=5 / 2, \mathrm{f}(\mathrm{x})$ is continuous.
If $k=5 / 2$, then $f(x)$ is continuous everywhere on $[1, \infty)$.

