Answer on Question #74502 – Math – Calculus

Question Trace the curve $x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$. State the properties you use for tracing it also.

We use the following properties for tracing the curve.

We have the Cartesian curve defined by the parametric equations $x = f(\theta)$, $y = g(\theta)$. Since y is a periodic function of θ with period 2π , it is sufficient to trace the curve for $\theta \in [0, 2\pi]$.

For $\theta \in [0, 2\pi]$, *x* and *y* are well defined. Trace the curve $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$; $0 \le \theta \le 2\pi$; a > 0.

1. Symmetry $x = f(\theta) = a(\theta - \sin \theta);$ $y = g(\theta) = a(1 - \cos \theta)$

 $f(-\theta) = a(-\theta - \sin(-\theta)) = -f(\theta);$ $g(-\theta) = a(1 - \cos(-\theta)) = g(\theta).$ Therefore, the curve is symmetrical about the *y* -axis.

Curve is not symmetrical about *y*- axis. Curve is not symmetrical about the line y = x. Curve is not symmetrical about the line y = -x. Curve is not symmetrical in opposite quadrants.

2. Origin (0,0): $x = f(\theta) = a(\theta - \sin \theta) = 0$, $y = g(\theta) = a(1 - \cos \theta) = 0$ $\begin{cases} a(\theta - \sin \theta) = 0\\ a(1 - \cos \theta) = 0 \\ = 0 \end{cases} = \begin{cases} \theta - \sin \theta = 0\\ 1 - \cos \theta = 0 \end{cases} = \begin{cases} \sin \theta = \theta\\ \cos \theta = 1 \end{cases} = > \\ \begin{cases} \sin \theta = \theta\\ \theta = 0 \text{ or } \theta = 2\pi \end{cases} = > \theta = 0 \end{cases}$ A curve passes through the origin. Derivatives: $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a \sin \theta}{a(1 - \cos \theta)} = \frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}} = \cot \frac{\theta}{2}$ At $\theta = 0, dy/dx = \infty$. Tangent to the curve at $\theta = 0$ is perpendicular to x -axis.

3. Intercepts

Intersection with x- axis: The points of intersection of the curve with the x – axis are given by the roots of $g(\theta) = 0, 0 \le \theta \le 2\pi; a > 0$.

 $a(1 - \cos \theta) = 0$ $\cos \theta = 1$ $\theta = 0 \text{ or } \theta = 2\pi$ $f(0) = a(0 - \sin(0)) = 0$ $f(2\pi) = a(2\pi - \sin 2\pi) = 2\pi a$ $Point(0, 0), Point(2\pi, 0)$ $f(0) = a(0 - \sin(0)) = 0$ $f(2\pi) = a(2\pi - \sin 2\pi) = 2\pi a$ Then $(x, y) = (0, 0); (x, y) = (2a\pi, 0)$

Intersection with *y*- axis: The points of intersection of the curve with the *y* – axis are given by the roots of $f(\theta) = 0, 0 \le \theta \le 2\pi; a > 0$. $f(\theta) = 0 => a(\theta - \sin \theta) = 0, 0 \le \theta \le 2\pi; a > 0$. $\theta - \sin \theta = 0$ $\theta = 0$ *Point*(0,0) g(0) = 0Then (x, y) = (0,0)

4. Asymptotes $x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$ There is no vertical asymptote. There is no horizontal asymptote. There is no oblique asymptote. 5. Regions where no Part of the curve lies $x = a(\theta - \sin \theta), y = a(1 - \cos \theta), a > 0$ Note that $y \ge 0$. Entire curve lies above the y –axis ($0 \le y \le 2a$).

6. First derivative

$$x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a \sin \theta}{a(1 - \cos \theta)} = \frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}} = \cot \frac{\theta}{2}$$
At $\theta = 0, dy/dx = \infty$. Tangent to the curve at $\theta = 0$ is perpendicular to x -axis.
At $\theta = \pi, dy/dx = 0$. Tangent to the curve is parallel to x -axis at $\theta = \pi$.
At $\theta = 2\pi, dy/dx = \infty$. Tangent to the curve is again perpendicular to x -axis
at $\theta = 2\pi$.
For $0 < \theta < \pi, \frac{dy}{dx} > 0$.
Therefore, the function $y(x)$ is increasing in this interval.
For $\pi < \theta < 2\pi, \frac{dy}{dx} < 0$.
Therefore, the function $y(x)$ is decreasing in this interval.
7. Second derivative
 $x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$

$$x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$$

$$\frac{dy}{dx} = \cot \frac{\theta}{2}$$

$$\frac{d^2 y}{dx^2} = \frac{\frac{d}{d\theta} \left(\frac{dy}{d\theta}\right)}{\frac{dx}{d\theta}} = \frac{-\frac{1}{2\sin^2 \frac{\theta}{2}}}{a(1 - \cos \theta)} = -\frac{1}{4\sin^2 \frac{\theta}{2}}$$

For $0 < \theta < 2\pi$, $\frac{d^2 y}{dx^2} < 0 =>$ concave downward.

θ	0	$\pi/2$	π	$3\pi/2$	2π
x	0	$a(\pi/2 - 1)$	απ	$a(3\pi/2+1)$	2απ
у	0	а	2a	а	0
dy/dx	8	1	0	-1	8

Answer provided by <u>https://www.AssignmentExpert.com</u>