Answer on Question \#74406 - Math - Calculus Question

Check whether there exists a continuously differentiable function g defined by $f(x, y)=0$ in the neighbourhood of $x=3$, such that $g(3)=1 / 3$. Find $g^{\prime}(3)$, if it exists.

Solution

Let

$$
y=g(x) ; f(x, y)=g(x)-y
$$

If the limit

$$
\lim _{h \rightarrow 0} \frac{g(c+h)-g(c)}{h}=g^{\prime}(c)
$$

exists for every $c \in(a, b)$, then we say that $g(x)$ is differentiable on (a, b).
Let

$$
g(x)=\frac{1}{x} ; x \neq 0
$$

Then:

$$
\lim _{h \rightarrow 0}\left(\frac{\frac{1}{c+h}-\frac{1}{c}}{h}\right)=\lim _{h \rightarrow 0}\left(\frac{c-c-h}{h c(c+h)}\right)=\lim _{h \rightarrow 0}\left(-\frac{1}{c(c+h)}\right)=-\frac{1}{c^{2}}
$$

Since the limit exists, the function $g(x)=1 / x$ is differentiable function in the neighborhood of $x=3$ and there exists a continuously differentiable function g defined by $f(x, y)=0$ in the neighborhood of $x=3$ such that $g(3)=1 / 3$:

$$
\begin{gathered}
g^{\prime}(x)=-\frac{1}{x^{2}} \\
g^{\prime}(3)=-\frac{1}{3^{2}}=-\frac{1}{9}
\end{gathered}
$$

