Question \#74266

Calculate the volume of a parallelepiped whose sides are given by the vectors $a=3^{\wedge} i+2^{\wedge} j+k^{\wedge}$, $b=-^{\wedge} i+3^{\wedge} j$ and $c=2^{\wedge} i+2^{\wedge} j+5 k^{\wedge}$

Answer:

The volume of a parallelepiped is equal to the absolute value of the determinant of a three dimensional matrix, which is built using vector defining the parallelepiped:

$$
\begin{gathered}
V=\left|\operatorname{det}\left[\begin{array}{lll}
a_{i} & a_{j} & a_{k} \\
b_{i} & b_{j} & b_{k} \\
c_{i} & c_{j} & c_{k}
\end{array}\right]\right|=\left|\operatorname{det}\left[\begin{array}{ccc}
3 & 2 & 1 \\
-1 & 3 & 0 \\
2 & 2 & 5
\end{array}\right]\right|=\left|\operatorname{det}\left[\begin{array}{cc}
-1 & 3 \\
2 & 2
\end{array}\right]+5 \cdot \operatorname{det}\left[\begin{array}{cc}
3 & 2 \\
-1 & 3
\end{array}\right]\right|= \\
=|-2-2 \cdot 3+5(3 \cdot 3+2)|=47 \text { cubic units. }
\end{gathered}
$$

Answer provided by https://www.AssignmentExpert.com

