Answer on Question \#74180 -Math - Calculus

Question

Give an example of a function which is not integrable on [0, pi].Justify your answer.

Solution

The example of a function which is not integrable on $[0 ; \pi]$ is $f(x)=1 / x$.
If the function $f(x)$ is integrable on $[a ; b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Where

$$
\Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x
$$

$$
\text { Let } f(x)=\frac{1}{x}, a=0, b=\pi \text {, then } \Delta x=\frac{\pi}{n} \text { and } x_{i}=i \frac{\pi}{n} \text {. }
$$

For given n we need to choose a set of points $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ that 'fails'. For example we can choose:

$$
x_{1}^{*}=\frac{\pi}{n^{2}}, \quad x_{i}^{*}=x_{i} \quad(i \geq 2)
$$

Then we have:

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \geq f\left(x_{1}^{*}\right) \Delta x=\frac{1}{\pi / n^{2}} \cdot \frac{\pi}{n}=n
$$

Here, we use the fact that every term in the sum is positive, so the sum is greater than its first term $f\left(x_{1}^{*}\right) \Delta x$. If we let $n \rightarrow \infty$, the right-hand-side goes to ∞, and so by comparison we get

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\infty
$$

The Riemann sum is divergent, so f is not integrable over $[0 ; \pi]$.

Answer: The function $f(x)=1 / x$ is not integrable on $[0 ; \pi]$.
Answer provided by https://www.AssignmentExpert.com

