QUESTION

If

$$
x \cdot \sin y=\sin (p+y)
$$

show that

$$
\sin p \cdot \frac{d y}{d x}+\sin ^{2} y=0
$$

SOLUTION

We recall the rules for taking a derivative that we need to solve a given problem

$$
\begin{gathered}
\text { 1) } \frac{d y}{d x} \equiv y^{\prime} \\
\text { 2) } f(x)=g(x) \rightarrow \frac{d f}{d x}=\frac{d g}{d x}
\end{gathered}
$$

3) $y=f(x) \cdot g(x) \rightarrow \frac{d y}{d x}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)-$ the product rule
4) $y=f(g(x)) \rightarrow \frac{d y}{d x}=f^{\prime}(g(x)) \cdot g^{\prime}(x)-$ the chain rule
5) $y=\sin x \rightarrow \frac{d y}{d x}=\cos x$
6) $y=f(x+p) \rightarrow \frac{d y}{d x}=f^{\prime}(x+p), \quad \forall p \in \mathbb{R}$
7) $y=x \rightarrow \frac{d y}{d x}=(x)^{\prime}=1$
(More information: https://en.wikipedia.org/wiki/Differentiation_rules)

In our case,

$$
\left\lvert\, x \cdot \sin y=\sin (p+y) \rightarrow \underbrace{\frac{d}{d x}(x \cdot \sin y)}_{\text {the product rule }}=\frac{d}{d x}(\sin (p+y)) \rightarrow\right.
$$

$$
\begin{gathered}
(x)^{\prime} \cdot \sin y+x \cdot \frac{d(\sin y)}{d x}=\cos (p+y) \cdot \frac{d y}{d x} \rightarrow 1 \cdot \sin y+x \cdot \cos y \cdot \frac{d y}{d x}=\cos (p+y) \cdot \frac{d y}{d x} \\
\sin y+(x \cos y) \cdot \frac{d y}{d x}=\cos (p+y) \cdot \frac{d y}{d x} \rightarrow \sin y=\frac{d y}{d x} \cdot(\cos (p+y)-x \cos y)
\end{gathered}
$$

According to the problem

$$
x \cdot \sin y=\sin (p+y) \rightarrow x=\frac{\sin (p+y)}{\sin y}
$$

Recall some formulas from trigonometry

1) $\cos (p+y)=\cos p \cos y-\sin p \sin y$
2) $\sin (p+y)=\sin p \cos y+\cos p \sin y$
3) $\sin ^{2} \alpha+\cos ^{2} \alpha=1, \quad \forall \alpha \in \mathbb{R}$

(More information: https://en.wikipedia.org/wiki/List_of_trigonometric_identities)

Then,

$$
\begin{gathered}
\sin y=\frac{d y}{d x} \cdot(\cos (y+p)-x \cos y) \rightarrow \sin y=\frac{d y}{d x} \cdot\left(\cos (p+y)-\frac{\sin (p+y)}{\sin y} \cdot \cos y\right) \rightarrow \\
\sin y=\frac{d y}{d x} \cdot\left(\frac{\cos (p+y) \cdot \sin y-\sin (p+y) \cdot \cos y}{\sin y}\right)
\end{gathered}
$$

We transform the expression in parentheses

$$
\begin{gathered}
\frac{\cos (p+y) \cdot \sin y-\sin (p+y) \cdot \cos y}{\sin y}= \\
=\frac{(\cos p \cos y-\sin p \sin y) \cdot \sin y-(\sin p \cos y+\cos p \sin y) \cdot \cos y}{\sin y}= \\
=\frac{\cos p \cos y \sin y-\sin p \sin ^{2} y-\sin p \cos ^{2} y-\cos p \cos y \sin y}{\sin y}= \\
=\frac{-\sin p \cdot \overbrace{\left(\sin ^{2} y+\cos ^{2} y\right)}^{=1}}{\sin y}=\frac{-\sin p \cdot 1}{\sin y}=\frac{-\sin p}{\sin y}
\end{gathered}
$$

By collecting all the formulas obtained in one, we obtain

$$
\begin{gathered}
\sin y=\frac{d y}{d x} \cdot\left(\frac{\cos (p+y) \cdot \sin y-\sin (p+y) \cdot \cos y}{\sin y}\right) \rightarrow \sin y=\frac{d y}{d x} \cdot\left(\frac{-\sin p}{\sin y}\right) \rightarrow \\
\sin y=\frac{d y}{d x} \cdot\left(\frac{-\sin p}{\sin y}\right) \left\lvert\, \times(\sin y) \rightarrow \sin ^{2} y=\sin y \cdot \frac{-\sin p}{\sin y} \cdot \frac{d y}{d x} \rightarrow \sin ^{2} y=-\sin p \cdot \frac{d y}{d x} \rightarrow\right. \\
\sin ^{2} y+\sin p \cdot \frac{d y}{d x}=0 \leftrightarrow \sin p \cdot \frac{d y}{d x}+\sin ^{2} y=0
\end{gathered}
$$

Q.E.D.

