Answer on Question #74167, Math / Calculus

Trace the curve $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$. State the properties you use for tracing it also.

Solution

We use the following properties for tracing the curve:

We have the Cartesian curve defined by the parametric equations $x = f(\theta)$, $y = g(\theta)$. Since y is a periodic function of θ with period 2π , it is sufficient to trace the curve for $\theta \in [0, 2\pi]$.

For $\theta \in [0, 2\pi]$, x and y are well defined.

Trace the curve $x = a(\theta - \sin \theta), y = a(1 - \cos \theta); 0 \le \theta \le 2\pi; a > 0$.

1. Symmetry

$$x = f(\theta) = a(\theta - \sin \theta);$$

$$y = g(\theta) = a(1 - \cos \theta)$$

$$f(-\theta) = a(-\theta - \sin(-\theta)) = -f(\theta);$$

$$g(-\theta) = a(1 - \cos(-\theta)) = g(\theta).$$

Therefore, the curve is symmetrical about the y –axis.

Curve is not symmetrical about *y*- axis.

Curve is not symmetrical about the line y = x.

Curve is not symmetrical about the line y = -x.

Curve is not symmetrical in opposite quadrants.

2. Origin

$$(0,0): x = f(\theta) = a(\theta - \sin \theta) = 0, y = g(\theta) = a(1 - \cos \theta) = 0$$

$$\begin{cases} a(\theta - \sin \theta) = 0 \\ a(1 - \cos \theta) = 0 \end{cases} = > \begin{cases} \theta - \sin \theta = 0 \\ 1 - \cos \theta = 0 \end{cases} = > \begin{cases} \sin \theta = \theta \\ \cos \theta = 1 \end{cases} = >$$

$$= > \begin{cases} \sin \theta = \theta \\ \theta = 0 \text{ or } \theta = 2\pi \end{cases} = > \theta = 0$$

A curve passes through the origin.

Derivatives:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\sin\theta}{a(1-\cos\theta)} = \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^2\frac{\theta}{2}} = \cot\frac{\theta}{2}$$

At $\theta = 0$, $dy/dx = \infty$. Tangent to the curve at $\theta = 0$ is perpendicular to x –axis.

3. Intercepts

Intersection with x- axis: The points of intersection of the curve with the x – axis are given by the roots of $g(\theta) = 0$, $0 \le \theta \le 2\pi$; $\alpha > 0$.

$$a(1 - \cos \theta) = 0$$

$$\cos \theta = 1$$

$$\theta = 0 \text{ or } \theta = 2\pi$$

$$f(0) = a(0 - \sin(0)) = 0$$

 $f(2\pi) = a(2\pi - \sin 2\pi) = 2\pi a$
 $Point(0, 0), Point(2\pi, 0)$

Intersection with y- axis: The points of intersection of the curve with the y - axis are given by the roots of $f(\theta) = 0, 0 \le \theta \le 2\pi$; $\alpha > 0$.

$$f(\theta) = 0 \Longrightarrow \alpha(\theta - \sin \theta) = 0, 0 \le \theta \le 2\pi; \alpha > 0.$$

$$\theta - \sin \theta = 0$$

$$\theta = 0$$

Point(0,0)

$$g(\theta) = 0 => a(1 - \cos \theta) = 0, 0 \le \theta \le 2\pi; a > 0.$$

$$\theta = 0$$
, $\theta = 2\pi$

$$f(0) = a(0 - \sin(0)) = 0$$

$$f(2\pi) = a(2\pi - \sin 2\pi) = 2\pi a$$

4. Asymptotes

$$x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$$

There is no vertical asymptote.

There is no horizontal asymptote.

There is no oblique asymptote.

5. Regions where no Part of the curve lies

Note that $y \ge 0$. Entire curve lies above the y –axis $(0 \le y \le 2a)$.

6. First derivative

$$x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$$

$$x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a \sin \theta}{a(1 - \cos \theta)} = \frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}} = \cot \frac{\theta}{2}$$

At $\theta = 0$, $dy/dx = \infty$. Tangent to the curve at $\theta = 0$ is perpendicular to x –axis.

At $\theta = \pi$, dy/dx = 0. Tangent to the curve is parallel to x –axis at $\theta = \pi$.

At $\theta = 2\pi$, $dy/dx = \infty$. Tangent to the curve is again perpendicular to x –axis at $\theta = 2\pi$.

For
$$0 < \theta < \pi$$
, $\frac{dy}{dx} > 0$.

Therefore, the function y(x) is increasing in this interval.

For
$$\pi < \theta < 2\pi$$
, $\frac{dy}{dx} < 0$.

Therefore, the function y(x) is decreasing in this interval.

$$x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$$

$$\frac{dy}{dx} = \cot \frac{\theta}{2}$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{d\theta}\left(\frac{dy}{d\theta}\right)}{\frac{dx}{d\theta}} = \frac{-\frac{1}{2\sin^2\frac{\theta}{2}}}{a(1-\cos\theta)} = -\frac{1}{4\sin^2\frac{\theta}{2}}$$
For $0 < \theta < 2\pi$, $\frac{d^2y}{dx^2} < 0 => concave downward$.

θ	0	$\pi/2$	π	$3\pi/2$	2π
х	0	$a(\pi/2 - 1)$	απ	$a(3\pi/2+1)$	$2a\pi$
y	0	а	2 <i>a</i>	а	0
dy/dx	8	1	0	-1	8

Answer provided by https://www.AssignmentExpert.com