Answer on Question \#74153 - Math - Statistics and Probability

The average price of a gallon of unleaded regular gasoline was reported to be \$2.75 in northern Kentucky. Use this price as the population mean, and assume the population standard deviation is $\$.20$.

Question

a. What is the probability that the mean price for a sample of 30 service stations is within $\$.03$ of the population mean?

Solution

$z=\frac{x-\mu}{\sigma / \sqrt{n}}$
$z=\frac{0.03}{0.20 / \sqrt{30}}=0.8216$
$P(|z| \leq 0.8216) \approx 2(0.7939)-1=0.5878$

Question

b. What is the probability that the mean price for a sample of 50 service stations is within $\$.03$ of the population mean?

Solution

$z=\frac{x-\mu}{\sigma / \sqrt{n}}$
$z=\frac{0.03}{0.20 / \sqrt{50}}=1.06066$
$P(|z| \leq 1.06066)=2(0.8554)-1=0.7108$

Question

c. What is the probability that the mean price for a sample of 100 service stations is within $\$.03$ of the population mean?

$$
\begin{aligned}
& \begin{array}{c}
\text { Solution } \\
z=\frac{x-\mu}{\sigma / \sqrt{n}}
\end{array} \\
& Z=\frac{0.03}{0.20 / \sqrt{100}}=1.5 \\
& P(|z| \leq 1.5)=2(0.9332)-1=0.8664
\end{aligned}
$$

Question

d. Which, if any, of the sample sizes in parts (a), (b), and (c) would you recommend to have at least a .95 probability that the sample mean is within $\$.03$ of the population mean?

Solution

None of the sample sizes in parts (a), (b), and (c) are large enough.

$$
\begin{gathered}
P(|z| \leq 1.96)=2(0.975)-1=0.95 \\
\frac{0.03}{0.20 / \sqrt{n}} \geq 1.96 \\
n \geq\left(\frac{1.96(0.2)}{0.03}\right)^{2}=>n \geq 171
\end{gathered}
$$

