Answer on Question \#74078 - Math - Calculus Question

The function f, defined by $f(x)=x$ cube- $6 x$ square $+16 x-15$ is increasing in R or not.

Solution

We are given the function

$$
f(x)=x^{3}-6 x^{2}+16 x-15
$$

In order to find out whether the function is increasing or not, we use the Increasing/Decreasing Test:
(a) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
(b) If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval.

Find derivative of this function
$f^{\prime}(x)=\left(x^{3}-6 x^{2}+16 x-15\right)^{\prime}=3 x^{2}-12 x+16$
To know where $f^{\prime}(x)>0$ and where $f^{\prime}(x)<0$ we solve the equation
$f^{\prime}(x)=3 x^{2}-12 x+16=0$
Find discriminant
$D=(12)^{2}-4 \cdot 3 \cdot 16=144-192=-48<0$
Since $D<0$ the equation has no roots and derivative $f^{\prime}(x)$ in R does not change the sign. We define the sign of the derivative substituting for x any number, for example, zero:
$f^{\prime}(0)=3 \cdot 0-12 \cdot 0+16=16>0$
Therefore $f^{\prime}(x)>0$ for any x and $f(x)$ is increasing in R .
Answer: The function $f(x)=x^{3}-6 x^{2}+16 x-15$ is increasing in R.

