## Answer on Question #74058 – Math – Differential Equations Question

Do the functions  $y_1(t) = \sqrt{t}$  and  $y_2(t) = 1/t$  form a fundamental set of solutions of the equation  $2t^2y'' + 3ty' - y = 0$ , on the interval  $t \in (, \infty)$ ? Justify your answer.

## **Solution**

$$2t^2y'' + 3ty' - y = 0$$

This is a Cauchy-Euler equation which is solved by the substitution  $y = t^r$ . Differentiating we have

$$y' = rt^{r-1}$$

$$y'' = r(r-1)t^{r-2}$$
Then
$$2t^{2}r(r-1)t^{r-2} + 3trt^{r-1} - t^{r} = 0$$

$$t^{r}(2r^{2} - 2r + 3r - 1) = 0$$

$$2r^{2} + r - 1 = 0$$

Use the quadratic formula

$$r = \frac{-1 \pm \sqrt{1 - 4(2)(-1)}}{2(2)} = \frac{-1 \pm 3}{4}$$

We have two distinct real roots

$$r_1 = \frac{-1+3}{4} = \frac{1}{2}$$
$$r_2 = \frac{-1-3}{4} = -1$$

The fundamental set of solutions of the equation

$$y = c_1(\sqrt{t}) + c_2\left(\frac{1}{t}\right), t > 0$$

Yes, the functions  $y_1(t) = \sqrt{t}$  and  $y_2(t) = 1/t$  form a fundamental set of solutions of the equation  $2t^2y'' + 3ty' - y = 0$ , on the interval  $t \in (, \infty)$ .

Answer provided by <a href="https://www.AssignmentExpert.com">https://www.AssignmentExpert.com</a>