Answer on Question \#74052 - Math - Calculus

Question

Trace the curve $x\left(y^{2}+4\right)=8$, stating all the points used for doing so.

Solution

1. Symmetry
$x\left(y^{2}+4\right)=8$
All powers of y in the equation are even.

$$
x\left((-y)^{2}+4\right)=x\left(y^{2}+4\right)
$$

Therefore, curve is symmetrical about x-axis.
Curve is not symmetrical about y-axis.
Curve is not symmetrical about the line $y=x$.
Curve is not symmetrical about the line $y=-x$.
Curve is not symmetrical in opposite quadrants.
2. Origin
$x\left(y^{2}+4\right)=8$
$(0,0): 0\left((0)^{2}+4\right)=8$
$4=8$, False
A curve does not pass through the origin.
3. Intercepts
$x\left(y^{2}+4\right)=8$
Intersection with x-axis: Put $y=0$ in the equation of the curve and solve the resulting equation
$x(0+4)=8=>x=2$
Intersection with x - axis: Point $(2,0)$
Intersection with y-axis: Put $x=0$ in the equation of the curve and solve the resulting equation
$0\left(y^{2}+4\right)=8=>$ No solutions.
There is no intersection with y-axis.
Tangent to the curve
In order to find the tangent(s) at the point $(2,0)$, we should shift the origin to $(2,0)$ and then the tangent(s) at this new origin will be obtained by equating to zero the lowest degree term.
Tangent at the point $(2,0)$:

$$
x=2
$$

4. Asymptotes
$x\left(y^{2}+4\right)=8$
Asymptote(s) parallel to y - axis
Equal to zero the coefficient of the highest degree terms in y

$$
x=0 \text { Vertical asymptote }
$$

Asymptote(s) parallel to x - axis
Equal to zero the coefficient of the highest degree terms in x $y^{2}+4=0 \quad$ No solution
There is no horizontal asymptote.
Oblique asymptote(s)
There is no oblique asymptote.
5. Regions where no Part of the curve lies $x\left(y^{2}+4\right)=8$
Since $y^{2}+4>0$, we have $x>0$
$y^{2}+4=\frac{8}{x}$
Since $y^{2}+4 \geq 4, x>0$, we $x \leq 2$,
Therefore, $0<x \leq 2, y \in R$.
When $x \rightarrow 0^{+}, y \rightarrow \pm \infty$
6. First derivative
$x\left(y^{2}+4\right)=8$
Differentiate both sides with respect to x and use the Chain rule

$$
\begin{gathered}
y^{2}+4+x(2 y) \frac{d y}{d x}=0 \\
\frac{d y}{d x}=-\frac{y^{2}+4}{2 x y} \\
\frac{d y}{d x}=-\frac{\frac{8}{x}}{2 x y} \\
\frac{d y}{d x}=-\frac{4}{x^{2} y}
\end{gathered}
$$

If $y>0, \frac{d y}{d x}<0, y$ decreases
If $y<0, \frac{d y}{d x}>0, y$ increases
If $x \rightarrow 2^{-}, \frac{d y}{d x} \rightarrow \pm \infty$

The tangent at the point $(2,0)$ is the straight line parallel to the y-axis.
7. Second derivative
$x\left(y^{2}+4\right)=8$
$\frac{d y}{d x}=-\frac{4}{x^{2} y}$
Differentiate both sides with respect to x and use the Chain rule
$\frac{d^{2} y}{d x^{2}}=4 \frac{2 x y+x^{2} \frac{d y}{d x}}{x^{4} y^{2}}$
$\frac{d^{2} y}{d x^{2}}=4 \frac{2 x y+x^{2}\left(-\frac{4}{x^{2} y}\right)}{x^{4} y^{2}}$
$\frac{d^{2} y}{d x^{2}}=4 \frac{2 x y-\frac{4}{y}}{x^{4} y^{2}}$
$\frac{d^{2} y}{d x^{2}}=8 \frac{x y^{2}-2}{x^{4} y^{3}}$
$\frac{d^{2} y}{d x^{2}}=0=>8 \frac{x y^{2}-2}{x^{4} y^{3}}=0$
$x y^{2}-2=0$
$x\left(\frac{8}{x}-4\right)-2=0$
$8-4 x-2=0$
$x=\frac{3}{2}$
$\frac{3}{2}\left(y^{2}+4\right)=8$
$y^{2}+4=\frac{16}{3}$
$y^{2}=\frac{4}{3}$
$y= \pm \frac{2 \sqrt{3}}{3}$
If $y<-\frac{2 \sqrt{3}}{3}, 0<x<\frac{3}{2}, \frac{d^{2} y}{d x^{2}}<0$, the graph concaves down
If $-\frac{2 \sqrt{3}}{3}<y<0, \frac{3}{2}<x<2, \frac{d^{2} y}{d x^{2}}>0$, the graph concaves up
If $0<y<\frac{2 \sqrt{3}}{3}, \frac{3}{2}<x<2, \frac{d^{2} y}{d x^{2}}<0$, the graph concaves down

If $y>\frac{2 \sqrt{3}}{3}, 0<x<\frac{3}{2}, \frac{d^{2} y}{d x^{2}}>0$, the graph concaves up

