Question

Trace the curve $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$. State the properties you use for tracing it, also.

Solution

To trace a Cartesian curve defined by the parametric equations $x = f(\theta)$,

 $y = g(\theta)$, we use the following properties.

If either x or y is a periodic function of θ with period T then trace the curve in one period, say for $\theta \in [0, T]$.

Trace the curve $x = a(\theta - \sin \theta), y = a(1 - \cos \theta); 0 \le \theta \le 2\pi; a > 0$. Note that

 $f(-\theta) = a(-\theta - \sin(-\theta)) = -f(\theta);$

$$g(-\theta) = a(1 - \cos(-\theta)) = g(\theta).$$

Therefore, the curve is symmetric about the y –axis.

Also *y* is a periodic function of θ with period 2π . It is sufficient to trace the curve for $\theta \in [0, 2\pi]$.

For $\theta \in [0, 2\pi]$, *x* and *y* are well defined.

Note that $y \ge 0$. Entire curve lies above the y –axis ($0 \le y \le 2a$).

Determine the points where the curve crosses the axes. The points of intersection of the curve with the x – axis are given by the roots of $f(\theta) = 0$, while those with the y – axis are given by the roots of $g(\theta) = 0$.

$$f(\theta) = 0 \Longrightarrow a(\theta - \sin \theta) = 0, 0 \le \theta \le 2\pi; a > 0.$$

$$\theta = 0 \text{ or } \theta = \sin \theta , 0 < \theta < \frac{\pi}{2}$$

$$g(\theta) = 0 \Longrightarrow a(1 - \cos \theta) = 0, 0 \le \theta \le 2\pi; a > 0.$$

$$\theta = 0, \ \theta = 2\pi$$

$$f(0) = a(0 - \sin(0)) = 0$$

$$f(2\pi) = a(2\pi - \sin 2\pi) = 2\pi a$$

Derivatives:

$$dy \qquad \theta = \theta$$

$\frac{dy}{d\theta} = \frac{dy}{d\theta}$	$a\sin\theta$	$\frac{2\sin\frac{\theta}{2}\cos\theta}{2}$	$\frac{6}{2} = \cot \theta$		
$\frac{dx}{dx} = \frac{dx}{d\theta}$	$\frac{1}{a(1-\cos \alpha)}$	$\frac{\theta}{\theta} = \frac{1}{2\sin^2\frac{\theta}{2}}$	$= - \cot \frac{1}{2}$		
θ	0	$\pi/2$	π	$3\pi/2$	2π
x	0	$a(\pi/2 - 1)$	απ	$a(3\pi/2+1)$	2απ
y	0	а	2a	а	0
dy/dx	8	1	0	-1	8

At $\theta = 0$, $dy/dx = \infty$. Tangent to the curve at $\theta = 0$ is perpendicular to x -axis.

At $\theta = \pi$, dy/dx = 0. Tangent to the curve is parallel to x –axis at $\theta = \pi$.

At $\theta = 2\pi$, $dy/dx = \infty$. Tangent to the curve is again perpendicular to x – axis at $\theta = 2\pi$.

For
$$0 < \theta < \pi$$
, $\frac{dy}{dx} > 0$.

Therefore, the function is increasing in this interval.

For
$$\pi < \theta < 2\pi$$
, $\frac{dy}{dx} < 0$.

Therefore, the function is decreasing in this interval.

For $0 < \theta < 2\pi$, $\frac{d^2 y}{dx^2} < 0 =>$ concave downward. Answer provided by <u>https://www.AssignmentExpert.com</u>