Answer on Question \#73992 - Math - Calculus

Question

Trace the curve $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$. State the properties you use for tracing it, also.

Solution

To trace a Cartesian curve defined by the parametric equations $x=f(\theta)$, $y=g(\theta)$, we use the following properties.
If either x or y is a periodic function of θ with period T then trace the curve in one period, say for $\theta \in[0, T]$.
Trace the curve $x=a(\theta-\sin \theta), y=a(1-\cos \theta) ; 0 \leq \theta \leq 2 \pi ; a>0$.
Note that

$$
f(-\theta)=a(-\theta-\sin (-\theta))=-f(\theta)
$$

$g(-\theta)=a(1-\cos (-\theta))=g(\theta)$.
Therefore, the curve is symmetric about the y-axis.
Also y is a periodic function of θ with period 2π. It is sufficient to trace the curve for $\theta \in[0,2 \pi]$.
For $\theta \in[0,2 \pi], x$ and y are well defined.
Note that $y \geq 0$. Entire curve lies above the y-axis $(0 \leq y \leq 2 a)$.
Determine the points where the curve crosses the axes. The points of intersection of the curve with the x - axis are given by the roots of $f(\theta)=0$, while those with the y - axis are given by the roots of $g(\theta)=0$.
$f(\theta)=0=>a(\theta-\sin \theta)=0,0 \leq \theta \leq 2 \pi ; a>0$.
$\theta=0$ or $\theta=\sin \theta, 0<\theta<\frac{\pi}{2}$
$g(\theta)=0=>a(1-\cos \theta)=0,0 \leq \theta \leq 2 \pi ; a>0$.
$\theta=0, \quad \theta=2 \pi$
$f(0)=a(0-\sin (0))=0$
$f(2 \pi)=a(2 \pi-\sin 2 \pi)=2 \pi a$
Derivatives:
$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a \sin \theta}{a(1-\cos \theta)}=\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}}=\cot \frac{\theta}{2}$

θ	0	$\pi / 2$	π	$3 \pi / 2$	2π
x	0	$a(\pi / 2-1)$	$a \pi$	$a(3 \pi / 2+1)$	$2 a \pi$
y	0	a	$2 a$	a	0
$d y / d x$	∞	1	0	-1	∞

At $\theta=0, d y / d x=\infty$. Tangent to the curve at $\theta=0$ is perpendicular to x-axis.
At $\theta=\pi, d y / d x=0$. Tangent to the curve is parallel to x-axis at $\theta=\pi$.
At $\theta=2 \pi, d y / d x=\infty$. Tangent to the curve is again perpendicular to x-axis at $\theta=2 \pi$.
For $0<\theta<\pi, \frac{d y}{d x}>0$.
Therefore, the function is increasing in this interval.
For $\pi<\theta<2 \pi, \frac{d y}{d x}<0$.
Therefore, the function is decreasing in this interval.

$\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d \theta}\left(\frac{d y}{d \theta}\right)}{\frac{d x}{d \theta}}=\frac{-\frac{1}{2 \sin ^{2} \frac{\theta}{2}}}{a(1-\cos \theta)}=-\frac{1}{4 \sin ^{2} \frac{\theta}{2}}$
For $0<\theta<2 \pi, \frac{d^{2} y}{d x^{2}}<0=>$ concave downward.

