Answer on Question \#73785 - Math - Statistics and Probability

Consider the following five data points:
$\begin{array}{lllll}X & -1 & 0 & 123 \\ Y & -1 & 1 & 24 & 5\end{array}$
a) use regression analysis to calculate by hand the estimated coefficients of the equation $Y=B+A X$

Solution

mean of $x=\bar{x}=\frac{\sum x_{i}}{n}$
mean of $y=\bar{y}=\frac{\sum y_{i}}{n}$
trend line: $Y=B+A X, A=\frac{S_{x y}}{S_{x x}}, B=\bar{y}-A \bar{x}$
$S_{x x}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}=\frac{\sum\left(x_{i}\right)^{2}}{n}-(\bar{x})^{2}$
$S_{y y}=\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n}=\frac{\sum\left(y_{i}\right)^{2}}{n}-(\bar{y})^{2}$
$S_{x y}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n}=\frac{\sum x_{i} \cdot y_{i}}{n}-\bar{x} \cdot \bar{y}$
mean of $x=\bar{x}=\frac{-1+0+1+2+3}{5}=1$
mean of $y=\bar{y}=\frac{-1+1+2+4+5}{5}=2.2$
$S_{x x}=\frac{(-1)^{2}+(0)^{2}+(1)^{2}+(2)^{2}+(3)^{2}}{5}-(1)^{2}=2$
$S_{y y}=\frac{(-1)^{2}+(1)^{2}+(2)^{2}+(4)^{2}+(5)^{2}}{5}-(2.2)^{2}=4.56$
$S_{x y}=\frac{(-1)(-1)+(0)(1)+(1)(2)+(2)(4)+(3)(5)}{5}-(1)(2.2)=3$
$A=\frac{3}{2}=1.5$
$B=2.2-1.5(1)=0.7$

$$
Y=0.7+1.5 X
$$

(b) compute the standard error and the t-statistics for the coefficient of determination of X

Solution

$$
r=\frac{S_{x y}}{\sqrt{S_{x x}} \sqrt{S_{y y}}}
$$

the coefficient of determination of X

$$
r^{2}=\frac{\left(S_{x y}\right)^{2}}{S_{x x} S_{y y}}
$$

$r^{2}=\frac{(3)^{2}}{2(4.56)}=0.986842105$
$r=0.993399267$

x	y	\hat{y}	$\hat{y}-y$	$(\hat{y}-y)^{2}$
-1	-1	-0.8	0.2	0.04
0	1	0.7	-0.3	0.09
1	2	2.2	0.2	0.04
2	4	3.7	-0.3	0.09
3	5	5.2	0.2	0.04

$S S T=\sum\left(y_{i}-\bar{y}\right)^{2}=22.8$
$S S R=\sum\left(\widehat{y_{l}}-\bar{y}\right)^{2}=22.5$
$r^{2}=\frac{S S R}{S S T}=\frac{22.5}{22.8} \approx 0.986842105$
$S E E=\sqrt{\frac{\sum(\hat{y}-y)^{2}}{n-2}}$
$S E E=\sqrt{\frac{0.04+0.09+0.04+0.09+0.04}{5-2}}=\sqrt{0.1} \approx 0.316227766$
Standard error of slope
$S E_{A}=\frac{S E E}{\sqrt{\sum(x-\bar{x})^{2}}}$
$S E_{A}=\frac{\sqrt{0.1}}{\sqrt{(-1-1)^{2}+(0-1)^{2}+(1-1)^{2}+(2-1)^{2}+(3-1)^{2}}}=0.1$
The test for the significance of regression for the data in the table
The test is carried out using the $t-$ test on the coefficient A.
$H_{0}: A=0$
$H_{1}: A \neq 0$

The test statistic can be calculated using the following equation:
Test Statistic: $t_{0}=\frac{A-0}{S E_{A}}=\frac{1.5}{0.1}=15$
This statistic based on the t distribution with $3(n-2=5-2=3)$ degrees of freedom can be obtained as follows:
$\alpha=0.01$
$\alpha / 2=0.005$
$d f=n-2=5-2=3$
Critical value: $=5.841$
Statistical conclusion:
Reject H_{0}, there is evidence that A is not equal to zero and that a significant relationship exists between y and x.

The coefficient of non-determination was used in the t-test to see if there was significant linear correlation.
The standard error of the estimate is the square root of the coefficient of nondetermination divided by its degrees of freedom.
$s_{e}=\sqrt{\frac{1-r^{2}}{n-2}}$
$s_{e}=\sqrt{\frac{1-0.986842105}{5-2}} \approx 0.066226618$
The test is carried out using the $t-$ test on the coefficient $1-r^{2}$.
$H_{0}: 1-r^{2}=1$
$H_{1}: 1-r^{2}<0$
The test statistic can be calculated using the following equation:
Test Statistic: $t_{0}=\frac{\left(1-r^{2}\right)-1}{s_{e}}=\frac{-0.986842105}{0.066226618} \approx-14.90098898$
This statistic based on the t distribution with $3(n-2=5-2=3)$ degrees of freedom can be obtained as follows:
$\alpha=0.01$
$d f=n-2=5-2=3$
Critical value: $=4.54070$
Statistical conclusion:
Reject H_{0}, there is evidence that $\left(1-r^{2}\right)$ is not equal to 1 and that a significant relationship exists between y and x.

