Answer on Question \#73784 - Math - Statistics and Probability

Question

Consider the following five data points:

x	-1.0	0.0	1.0	2.0	3.0
y	-1.0	1.0	1.0	2.5	3.5

a. Use regression analysis to calculate by hand the estimated coefficients of the equation $y=b+a x$.
b. Compute the coefficient of determination.
c. What is the predicted value of y for $x=1.0$? For $x=3.5$?

Solution

a. Regression equation of y on x :

$$
y=\mu_{y}+\frac{\operatorname{Cov}(x, y)}{\sigma_{x}{ }^{2}}\left(x-\mu_{x}\right) .
$$

where μ_{x} and μ_{y} are mean values of x and $y, \sigma_{x}{ }^{2}$ is a variance of x and $\operatorname{Cov}(x, y)$ is a covariance between x and y.

Let us calculate the necessary values:

$$
\begin{gathered}
\mu_{x}=E[X]=\frac{-1.0+0.0+1.0+2.0+3.0}{5}=1.0 \\
\mu_{y}=E[Y]=\frac{-1.0+1.0+1.0+2.5+3.5}{5}=1.4 \\
\operatorname{Cov}(x, y)=E[X Y]-E[X] E[Y] \\
=\frac{(-1.0) \cdot(-1.0)+0.0 \cdot 1.0+1.0 \cdot 1.0+2.0 \cdot 2.5+3.0 \cdot 3.5}{5}-1.0 \cdot 1.4=2.1 \\
\sigma_{x}^{2}=\operatorname{Var}[X]= \\
=2.0
\end{gathered}
$$

Therefore, the regression equation is

$$
y=1.4+\frac{2.1}{2.0}(x-1.0)
$$

or

$$
y=1.05 x+0.35
$$

b. Let us first calculate the predicted values \hat{y}_{i} of dependent variable by formula

$$
\hat{y}_{i}=1.05 x_{i}+0.35
$$

The results we put in the Table 1:

x	-1.0	0.0	1.0	2.0	3.0
y	-1.0	1.0	1.0	2.5	3.5
\hat{y}	-0.7	0.35	1.4	2.45	3.5

The coefficient of determination R^{2} is defined as

$$
R^{2}=1-\frac{S S_{\text {res }}}{S S_{\text {tot }}},
$$

where

$$
\begin{aligned}
S S_{\text {res }}=\sum_{i}\left(y_{i}\right. & \left.-\hat{y}_{i}\right)^{2} \\
& =(-1.0+0.7)^{2}+(1.0-0.35)^{2}+(1.0-1.4)^{2}+(2.5-2.45)^{2}+(3.5-3.5)^{2} \\
& =0.675
\end{aligned} \quad \begin{aligned}
S S_{\text {tot }}=\sum_{i}\left(y_{i}\right. & \left.-\mu_{y}\right)^{2} \\
& =(-1.0-1.4)^{2}+(1.0-1.4)^{2}+(1.0-1.4)^{2}+(2.5-1.4)^{2}+(3.5-1.4)^{2} \\
& =11.7
\end{aligned}
$$

Therefore,

$$
R^{2}=1-\frac{0.675}{11.7}=0.94
$$

c. The predicted values of y is calculated in Table 1 . So the predicted value of y for $x=1.0$ is equal to $1.05 \cdot 1.0+0.35=1.4$ and the predicted value of y for $x=3.5$ is equal to 1.05 . $3.5+0.35=4.025$

Answer: a. $y=1.05 x+0.35, b=0.35, a=1.05 ;$ b. $R^{2}=0.94 ;$ c. 1.4 and 4.025 .

