Answer on Question #73487 – Math – Calculus

Question

Check whether there exists a continuously differentiable function g defined by f(x,y) = 0 in the neighborhood of x=3 such that g(3) = 1/3.

Solution

First of all, check the given function is differentiable function or not. Suppose that $f:(a,b) \rightarrow R$ and a < c < b, y = g(x), f(x,y) = g(x) - y

Then there exists a differentiable function g at c with derivative g'(x) if

$$\lim_{h\to 0}\frac{g(c+h)-g(c)}{h}=g'(c).$$

The domain of f' is the set of points $c \in (a, b)$ for which this limit exists. If the limit exists for every $c \in (a, b)$ then we say that f is differentiable on (a, b).

Let
$$g(x) = \frac{1}{x}, x \neq 0$$
 $g'(x) = -\frac{1}{x^2}$ since

$$\lim_{h \to 0} \left[\frac{\frac{1}{(c+h)} - \frac{1}{(c)}}{h} \right] = \lim_{h \to 0} \left[\frac{c-c-h}{hc(c+h)} \right] = \lim_{h \to 0} \left[\frac{-h}{hc(c+h)} \right]$$

$$\lim_{h \to 0} \left[\frac{-1}{c(c+h)} \right] = \frac{-1}{c^2}$$

Hence the function $g(x) = \frac{1}{x}$ is differentiable function in the neighborhood of x = 3. Therefore, it is true there exists a continuously differentiable function g defined by f(x,y) = 0 in the neighborhood of x=3 such that g(3) = 1/3.

Answer provided by https://www.AsignmentExpert.com