Answer on Question \#73487 - Math - Calculus

Question

Check whether there exists a continuously differentiable function g defined by $f(x, y)=0$ in the neighborhood of $x=3$ such that $g(3)=1 / 3$.

Solution

First of all, check the given function is differentiable function or not. Suppose that $f:(a, b) \rightarrow R$ and $a<c<b, y=g(x), f(x, y)=g(x)-y$

Then there exists a differentiable function g at c with derivative $g^{\prime}(x)$ if

$$
\lim _{h \rightarrow 0} \frac{g(c+h)-g(c)}{h}=g^{\prime}(c) .
$$

The domain of f^{\prime} is the set of points $c \in(a, b)$ for which this limit exists. If the limit exists for every $c \in$ (a, b) then we say that f is differentiable on (a, b).

Let $g(x)=\frac{1}{x}, x \neq 0 \quad g^{\prime}(x)=-\frac{1}{x^{2}}$ since
$\lim _{h \rightarrow 0}\left[\frac{\frac{1}{(c+h)}-\frac{1}{(c)}}{h}\right]=\lim _{h \rightarrow 0}\left[\frac{c-c-h}{h c(c+h)}\right]=\lim _{h \rightarrow 0}\left[\frac{-h}{h c(c+h)}\right]$ $\lim _{h \rightarrow 0}\left[\frac{-1}{c(c+h)}\right]=\frac{-1}{c^{2}}$

Hence the function $g(x)=\frac{1}{x}$ is differentiable function in the neighborhood of $x=3$.. Therefore, it is true there exists a continuously differentiable function g defined by $f(x, y)=0$ in the neighborhood of $x=3$ such that $g(3)=1 / 3$.

Answer provided by https://www.AsignmentExpert.com

