Answer on Question \#73255 - Math - Calculus

Question

Check whether the function $f: R 2$ to R defined by $f(x, y)=2 x^{\wedge} 4-3 x^{\wedge} 2 y+y^{\wedge} 2$ has an extrema at $(0,0)$.

$$
\begin{gathered}
\text { Solution } \\
\frac{\partial f}{\partial x}=2\left(4 x^{3}\right)-3 y(2 x)=8 x^{3}-6 x y \\
\frac{\partial f}{\partial x}(0,0)=0 \\
\frac{\partial f}{\partial y}=-3 x^{2}(1)+2 y=2 y-3 x^{2} \\
\frac{\partial f}{\partial y}(0,0)=0 \\
A=\frac{\partial}{\partial x}\left(8 x^{3}-6 x y\right)=8\left(3 x^{2}\right)-6 y=24 x^{2}-6 y . \\
A(0,0)=0 \\
B=\frac{\partial}{\partial y}\left(8 x^{3}-6 x y\right)=-6 x . \\
B(0,0)=0 \\
C=\frac{\partial}{\partial y}\left(2 y-3 x^{2}\right)=2 . \\
C(0,0)=2
\end{gathered}
$$

Thus,

$$
B^{2}-A C=0^{2}-0(2)=0 .
$$

Thus, the type of critical point cannot be determined from the values of the partial derivatives.
But, returning to f, we can see that $(0,0)$ is a minimum for f if we restrict our attention on x-axis, and $(0,0)$ is a minimum for f if we restrict our attention on y-axis.

Therefore, $f(x, y)$ has a minimum at $(0,0)$.

