Answer on Question \#72902 - Math - Calculus

Question

The price P per unit at which a company can sell all that it produces is given by the function $P(x)=300-4 x$. The cost function is $c(x)=500+28 x$ where x is the number of units produced. Find x so that the profit is maximum.

Solution

Profit function $=$ Revenue function - Cost function

$$
P(x)=R(x)-C(x)
$$

$R(x)$ - Revenue function; $C(x)$ - Cost function.
The revenue function can be found as (price per unit) multiplied by (quantity of units). Therefore

$$
R(x)=P(x) \cdot x
$$

Therefore $R(x)=p(x) \cdot x=(300-4 x) x=300 x-4 x^{2}$. As result get profit function

$$
P(x)=300 x-4 x^{2}-500-28 x=272 x-4 x^{2}-500
$$

To find the maximum profit, we find the derivative $P^{\prime}(x)$ and equate it to zero.

$$
P^{\prime}(x)=272-8 x=0
$$

$$
272-8 x=0 \rightarrow x=34
$$

The value of the derivative for $x<34$ is $P^{\prime}(x)>0$; the value of the derivative for $x>34$ is $P^{\prime}(x)<0$. Hence, for $\mathrm{x}=34$, the profit takes the maximum value.

$$
P(34)=272 \cdot 34-4 \cdot 34^{2}-500=4124
$$

Answer: The profit takes the maximum value 4124 for $x=34$.

