Answer on Question \#71803 - Math - Statistics and Probability

Question

In Orange County, 51% of the adults are males. One adult is randomly selected for a survey involving credit card usage.
a) Find the prior probability that the selected person is a female.
b) It is later learned that the selected survey subject was smoking a cigar. Also, 9.5\% of males smoke cigars, whereas 1.7% of females smoke cigars. Use this additional information to find the probability that the selected subject is a female.

Solution

Let's use the following notation:
$M=$ male
$\bar{M}=$ female (or not male)
$C=$ cigar smoker
$\bar{C}=$ not cigar smoker
a) A prior probability is an initial probability value originally obtained before any additional information is obtained.
The prior probability that the selected person is a female

$$
P(\bar{M})=1-P(M)=1-0.51=0.49
$$

b) Bayes' Theorem

The probability of event A, given that event B has subsequently occurred, is

$$
P(A \mid B)=\frac{P(A) P(B \mid A)}{[P(A) P(B \mid A)]+[P(\bar{A}) P(B \mid \bar{A})]}
$$

Based on the additional information:
$P(M)=0.51$
$P(\bar{M})=0.49$
$P(C \mid M)=0.095$
$P(C \mid \bar{M})=0.017$
We can now apply Bayes' Theorem.
Then the probability that the selected subject is female using additional information that is later obtained

$$
\begin{gathered}
P(\bar{M} \mid C)=\frac{P(\bar{M}) P(C \mid \bar{M})}{[P(\bar{M}) P(C \mid \bar{M})]+[P(M) P(C \mid M)]} \\
P(\bar{M} \mid C)=\frac{0.49(0.017)}{[0.49(0.017)]+[0.51(0.095)]} \approx 0.1467
\end{gathered}
$$

