ANSWER on Question \#71730 - Math - Calculus

 QUESTIONGiven

$$
y(x)=2 x^{5}+x^{2}-\frac{5}{x^{2}}
$$

Find $d y / d x$

SOLUTION

As we know

$$
\begin{gathered}
\frac{d}{d x}(c \cdot y(x))=c \cdot \frac{d y}{d x} \\
\frac{d}{d x}\left(x^{n}\right)=n \cdot x^{n-1} \\
\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x}(f(x)) \pm \frac{d}{d x}(g(x))
\end{gathered}
$$

(More information:)
In our case,

$$
\begin{gathered}
\frac{d}{d x}\left(2 x^{5}+x^{2}-\frac{5}{x^{2}}\right)=\frac{d}{d x}\left(2 x^{5}\right)+\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}\left(\frac{5}{x^{2}}\right)= \\
=2 \cdot 5 \cdot x^{5-1}+2 \cdot x^{2-1}-5 \cdot \frac{d}{d x}\left(x^{-2}\right)=10 x^{4}+2 x-5 \cdot(-2) \cdot x^{-2-1}= \\
=10 x^{4}+2 x+10 x^{-3} \equiv 10 x^{4}+2 x+\frac{10}{x^{3}}
\end{gathered}
$$

Conclusion,

$$
y(x)=2 x^{5}+x^{2}-\frac{5}{x^{2}} \rightarrow \frac{d y}{d x}=10 x^{4}+2 x+\frac{10}{x^{3}}
$$

ANSWER: $\frac{d y}{d x}=10 x^{4}+2 x+\frac{10}{x^{3}}$

