Answer on Question \#71723 - Math - Calculus

Question

A street light is at the top of a 12 ft tall pole. A woman 6 ft tall walks away from the pole with a speed of $4 \mathrm{ft} / \mathrm{sec}$ along a straight path. How fast is the tip of her shadow moving along the ground when she is 50 ft from the base of the pole?

Solution

Let's draw a schematic diagram for the task.

Let the woman's distance from the pole be \mathbf{x}, the length of the shadow \mathbf{y}, the distance from the tip of the shadow to the base of the pole be is \mathbf{k}.

Using the similar triangles in the diagram it follows from equations

$$
\begin{gathered}
(y+x) / 12=x / 6 \\
k=y+x
\end{gathered}
$$

that

$$
k=2 x
$$

Now we can differentiate:

$$
\mathrm{dk} / \mathrm{dt}=2 \mathrm{dx} / \mathrm{dt}
$$

The rate at which the woman is walking is constant.

$$
\mathrm{dx} / \mathrm{dt}=4 \mathrm{ft} / \mathrm{s}
$$

Therefore,

$$
\mathrm{dk} / \mathrm{dt}=2 * 4 \mathrm{ft} / \mathrm{s}=8 \mathrm{ft} / \mathrm{s}
$$

Answer: 8 ft / s.

