Answer on Question #70822 – Math – Geometry

Question

1. Find parametrization of following level curve y^2-x^2=1.

Solution

The equation of the conjugate hyperbola in Cartesian coordinates is given by

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

A parametrization of the conjugate hyperbola is

$$x = a \cdot \sinh t$$
, $y = b \cdot \cosh t$, $t \in R$

(the hyperbolic identity $\cosh^2(t) - \sinh^2(t) = 1$ was applied),

then the curve

$$y^2 - x^2 = 1$$
, $a = 1$, $b = 1$

has the following parametrization:

$$x = \sinh t$$
, $y = \cosh t$, $t \in R$

Answer: $x = \sinh t$, $y = \cosh t$, $t \in R$

Question

2. Find parametrization of following level curve $x^2/4+y^2/9=1$.

Solution

The equation of an ellipse in Cartesian coordinates is given by

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

A parametrization of ellipse curve is

$$x = a \cdot \cos t$$
, $y = b \cdot \sin t$, $0 \le t \le 2\pi$

(the trigonometric identity $\cos^2(t) + \sin^2(t) = 1$ was applied),

then the curve

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
, $a = 2$, $b = 3$

has the following parametrization:

 $x = 2 \cdot \cos t$, $y = 3 \cdot \sin t$, $0 \le t \le 2\pi$

Answer: $x = 2 \cdot \cos t$, $y = 3 \cdot \sin t$, $0 \le t \le 2\pi$.