Suppose a special type of small data processing firm is so specialized that some have difficulty making a profit in their first year of operation. The p.d.f that characterizes the proportion Y that make a profit is given by: $k y^{4}(1-y)^{3}$ and 0 elsewhere.
A. What is the value of k that renders the above a valid density function?
B. B.Find the probability that at most 50% of the firms make a profit in the first year.
C. C. Find the probability that at least 80% of the firms make a profit in the first year.

Solution.

A.

$$
\begin{gathered}
\int_{0}^{1} k y^{4}(1-y)^{3} d y=k \int_{0}^{1}\left(y^{4}-3 y^{5}+3 y^{6}-y^{7}\right) d y=\left.k\left(\frac{y^{5}}{5}-\frac{3 y^{6}}{6}+\frac{3 y^{7}}{7}-\frac{y^{8}}{8}\right)\right|_{0} ^{1}= \\
=\frac{k}{280} \Rightarrow k=280 .
\end{gathered}
$$

B.

$$
\begin{gathered}
\int_{0}^{0,5} 280 y^{4}(1-y)^{3} d y=280 \int_{0}^{0,5}\left(y^{4}-3 y^{5}+3 y^{6}-y^{7}\right) d y= \\
=\left.280\left(\frac{y^{5}}{5}-\frac{3 y^{6}}{6}+\frac{3 y^{7}}{7}-\frac{y^{8}}{8}\right)\right|_{0} ^{0,5} \cong 0.363
\end{gathered}
$$

C.

$$
\begin{aligned}
& \int_{0,8}^{1} 280 y^{4}(1-y)^{3} d y= \\
&=280 \int_{0,8}^{1}\left(y^{4}-3 y^{5}+3 y^{6}-y^{7}\right) d y= \\
&=\left.280\left(\frac{y^{5}}{5}-\frac{3 y^{6}}{6}+\frac{3 y^{7}}{7}-\frac{y^{8}}{8}\right)\right|_{0,8} ^{1} \cong 0,056 .
\end{aligned}
$$

