Answer on Question \#70350 - Math - Statistics and Probability

Question

Consider the sampling distribution of x for random samples of 65 customer satisfactions ratings. Determine the probability of observing a sample mean greater than or equal to 42.95 when we assume that mean equals 42 .

Solution

Assume that σ, standard deviation equals 2.64.
$\mu=42, \sigma=2.64, n=65, \bar{x}=42.95$
$\mu_{\bar{x}}=42, \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{2.64}{\sqrt{65}}$
$P(\bar{x} \geq 42.95)=P\left(z \geq \frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\right)=P\left(z \geq \frac{42.95-42}{\frac{2.64}{\sqrt{65}}}\right)=P(z \geq 2.9012)=$ $=0.0019$

