Answer on Question #70245 - Math / Calculus

Question.

Sketch the graph of the function f defined by $f(x) = x^4 + 8x^3$, clearly giving all the properties used in it.

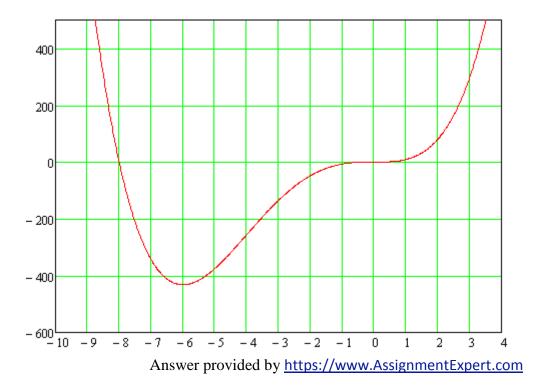
Solution

Domain $(-\infty, +\infty)$ 1. Find the points of intersection with the axis of abscissas ox $f(x) = x^4 + 8x^3 = 0$ $x^{3}(x+8) = 0$ $x_{1,2,3} = 0$ x + 8 = 0 $x_4 = -8$ 2. The intervals of increase and decreasing function f'(x) > 0, f'(x) < 0 $f'(x) = 4x^3 + 24x^2$ $4x^3 + 24x^2 = 0$ $4x^2(x+6) = 0$ $x_{1,2} = 0$ x + 6 = 0 $x_3 = -6$ -6 + -6 x

Here the critical points

 $x_1 = -6$ from "-" goes to "+" means minimum function $f(-6) = (-6)^4 + 8 \cdot (-6)^3 = -432$ Range $[-432, +\infty)$ $x_2 = 0$, *a*t this point the function does not increase and does not decrease.

 $x_2 = 0$, dt this point the function does not increase and does not de


3. Find the intervals convexity and concavity of a function

f''(x) > 0, f''(x) < 0 $f'(x) = 4x^{3} + 24x^{2}$ $f''(x) = 12x^{2} + 48x$ $12x^{2} + 48x = 0$ 12x(x + 4) = 0 $x_{1} = 0$ x + 4 = 0 $x_{2} = -4$ + - - +

 $f^{''}(x) > 0$, $(-\infty, -4) \cup (0, +\infty)$ Concavity $f^{''}(x) < 0$, (-4,0) Convexity

 $x_1 = -4$, $x_2 = 0$ Inflection points

