Question

Find the value of m so that the function $y = e^{mx}$ is a solution of the differential equation y' + 2y = 0.

Solution

Since the function $y = e^{mx}$ is a solution of the differential equation y' + 2y = 0, then $(e^{mx})' + 2e^{mx} = 0$.

Thus,

$$(e^{mx})' + 2e^{mx} = 0,$$

 $me^{mx} + 2e^{mx} = 0,$
 $e^{mx}(m+2) = 0.$

Since $e^{mx} > 0$ for any real numbers *m* and *x*, then m + 2 = 0.

Therefore, m = -2.

Answer: m = -2.

Answer provided by https://www.AssignmentExpert.com