Answer on Question \#69663 - Math - Differential Equations

Question

Solve the initial value problem

$$
\begin{align*}
& \frac{d y}{d x}=12 x^{3}-2 \sin x \tag{1}\\
& y(0)=3 \tag{2}
\end{align*}
$$

Solution

We can rewrite the equation (1) in the following form:

$$
d y=\left(12 x^{3}-2 \sin x\right) d x
$$

Now we shall integrate both sides of the previous equation:

$$
\begin{gather*}
\int d y=\int\left(12 x^{3}-2 \sin x\right) d x \\
y=y(x)=3 x^{4}+2 \cos x+C \tag{3}
\end{gather*}
$$

To find a constant C, we shall apply the initial condition (2) to the formula (3):

$$
\begin{gathered}
y(0)=2+C=3, \\
C=1 .
\end{gathered}
$$

Answer:
$y(x)=3 x^{4}+2 \cos x+1$.

