Answer on Question \#69661 - Math - Differential Equations

QUESTION

The degree of differential equation

$$
\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+x^{2}\left(\frac{d y}{d x}\right)^{3}=0
$$

SOLUTION

By the definition,
the degree of a differential equation is the power of its highest derivative, after the equation has been made rational and integral in all of its derivatives. (https://en.wikipedia.org/wiki/Degree of a differential equation)

We can see the equation

$$
(\underbrace{\frac{d^{3} y}{d x^{3}}}_{\text {highest derivative }})^{2}+2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+x^{2}\left(\frac{d y}{d x}\right)^{3}=0
$$

is a polynomial equation in $y^{\prime \prime \prime}(x), y^{\prime \prime}(x)$ and $y^{\prime}(x)$. The degree of this differential equation can be defined.

According to the above definition, the degree of the equation is 2 .

ANSWER

The degree of the differential equation

$$
\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+x^{2}\left(\frac{d y}{d x}\right)^{3}=0
$$

is 2 .
Answer provided by https://www.AssignmentExpert.com

