Answer on Question #69661 – Math – Differential Equations

QUESTION

The degree of differential equation

$$\left(\frac{d^3y}{dx^3}\right)^2 + 2\frac{d^2y}{dx^2} - \frac{dy}{dx} + x^2 \left(\frac{dy}{dx}\right)^3 = 0$$

SOLUTION

By the definition,

the **degree of a differential equation** is the power of its highest derivative, after the equation has been made rational and integral in all of its derivatives. (<u>https://en.wikipedia.org/wiki/Degree_of_a_differential_equation</u>)

We can see the equation

$$\left(\frac{d^3y}{dx^3}\right)^2 + 2\frac{d^2y}{dx^2} - \frac{dy}{dx} + x^2\left(\frac{dy}{dx}\right)^3 = 0$$

highest derivative

is a polynomial equation in y'''(x), y''(x) and y'(x). The degree of this differential equation can be defined.

According to the above definition, the degree of the equation is 2.

ANSWER

The degree of the differential equation

$$\left(\frac{d^3y}{dx^3}\right)^2 + 2\frac{d^2y}{dx^2} - \frac{dy}{dx} + x^2 \left(\frac{dy}{dx}\right)^3 = 0$$

is <u>2</u>.

Answer provided by https://www.AssignmentExpert.com