Answer to Question \#69654 - Math - Differential Equations

Question

One hundred grams of cane sugar in water are being converted into dextrose at a rate which is proportional to the amount unconverted. Find the differential equation expressing the rate of conversion after T minutes.

Solution

m_{s} - mass of sugar at the current moment of time
m_{D} - mass of dextrose at the current moment f time
$m_{s_{0}}=100 \mathrm{~g}$ - mass of sugar at the beginning
T - the time that had passed
C - proportion coefficient
The fact that the sugar is converted in to dextrose at a rate which is proportional to the amount of sugar unconverted in terms of differentiates means

$$
d m_{D}=C m_{s} d t
$$

where

$$
m_{s}=m_{s_{0}}-m_{D}
$$

because sucrose is converted somehow to dextrose and we can in general neglect the mas of one molecule of water per a molecule of sucrose (thus finally two molecules of dextrose).

So

$$
d m_{D}=C\left(m_{s_{0}}-m_{D}\right) d t
$$

Solving it we get

$$
\begin{gathered}
\ln \left(m_{s_{0}}-m_{D}\right)=-C t+K \\
m_{D}=m_{s_{0}}-e^{K-C t}=m_{s_{0}}-\frac{e^{K}}{e^{C t}}
\end{gathered}
$$

When $\mathrm{t}=0$ there is no dextrose so

$$
0=m_{s_{0}}-\frac{e^{K}}{e^{-C * 0}} \rightarrow e^{K}=m_{s_{0}}
$$

and therefore

$$
m_{D}=m_{s_{0}}\left(1-\frac{1}{e^{C t}}\right)=m_{s_{0}}\left(1-e^{-C t}\right)
$$

Thus, the rate of conversion after T minutes:

$$
d m_{D}=C\left(m_{s_{0}}-m_{D}\right) d t=C m_{s_{0}} e^{-C T} d t
$$

But we does not take the deferential equation! It should be treated in the terms of delta

$$
\Delta m_{D}=C m_{s_{0}} e^{-C T} \Delta t
$$

only when $T \gg \Delta t$.
The differential equation expressing the rate of conversion after T minutes will look like

$$
d m_{D}=C\left(m_{s_{0}}-C m_{s_{0}} e^{-C T}-m_{D}\right) d t=C\left(m_{s_{0}}\left(1-C e^{-C T}\right)-m_{D}\right) d t
$$

In the last formula (after integrating) time should be counted starting from moment T.

