Answer on Question \#69653 - Math - Differential Equations

Question

The degree of differential equation $\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+x^{2}\left(\frac{d y}{d x}\right)^{3}=0$ is

Solution

The degree of a differential equation is the power of its highest derivative, after the equation has been made rational and integral in all of its derivatives.
To study the degree of a differential equation, the key point is that the differential equation must be a polynomial equation in derivatives, i.e., $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}$ etc.
We observe that the differential equation

$$
\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+x^{2}\left(\frac{d y}{d x}\right)^{3}=0
$$

is a polynomial equation in $y^{\prime \prime \prime}, y^{\prime \prime}$ and y^{\prime}.
Then the degree of the differential equation can be defined.
The highest order derivative present in the differential equation is $\frac{d^{3} y}{d x^{3}}$.
So its order is 3 .
The highest power raised $\frac{d^{3} y}{d x^{3}}$ is 2 , so the degree of differential equation is 2 as well.
Answer: the degree of differential equation

$$
\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+x^{2}\left(\frac{d y}{d x}\right)^{3}=0
$$

is \qquad

