Answer on Question \#69650 - Math - Differential Equations

Question

Solve the second order differential equation

$$
\frac{\partial^{2} y}{\partial x^{2}}-4 y=12 x, y(0)=4, y^{\prime}(0)=1 .
$$

Solution

First, let's solve the corresponding homogenous equation $y^{\prime \prime}-4 y=0$. It's linear, so we can solve it using characteristic equation:

$$
\begin{aligned}
& t^{2}-4=0 \\
& (t+2)(t-2)=0, \\
& t_{1}=-2, \quad t_{2}=2
\end{aligned}
$$

There are two distinct eigenvalues, hence the general solution of this homogenous equation is

$$
y_{0}(x)=C_{1} e^{t_{1} x}+C_{2} e^{t_{2} x}=C_{1} e^{-2 x}+C_{2} e^{2 x} .
$$

Second, let's find any particular solution of the original non-homogenous equation. Right-hand side of the initial non-homogeneous differential equation is a polynomial of the first order, $12 x$, therefore, we'll look for a particular solution in polynomial form of the same order,

$$
y_{1}(x)=a x+b
$$

$$
\begin{gathered}
y_{1}=a x+b, \quad y_{1}^{\prime \prime}=0 \\
y^{\prime \prime}-4 y=0-4(a x+b)=-4 a x-b=12 x \\
\left\{\begin{array} { c }
{ - 4 a = 1 2 } \\
{ - b = 0 }
\end{array} \rightarrow \left\{\begin{array}{c}
a=-3 \\
b=0 .
\end{array}\right.\right.
\end{gathered}
$$

Thus, $y_{1}(x)=-3 x$ is a particular solution of the non-homogenous equation. Altogether, the general solution of the non-homogenous equation is the sum of any particular solution and the general solution of the corresponding homogenous equation:

$$
y(x)=y_{0}(x)+y_{1}(x)=C_{1} e^{-2 x}+C_{2} e^{2 x}-3 x .
$$

Finally, let's apply initial conditions: $y(0)=4$ and $y^{\prime}(0)=1$.

$$
\begin{aligned}
& y^{\prime}=\left(C_{1} e^{-2 x}+C_{2} e^{2 x}-3 x\right)^{\prime}=-2 C_{1} e^{-2 x}+2 C_{2} e^{2 x}-3, \\
& y^{\prime}(0)=-2 C_{1} e^{-2 \cdot 0}+2 C_{2} e^{2 \cdot 0}-3=-2 C_{1}+2 C_{2}-3, \\
& y(0)=C_{1} e^{-2 \cdot 0}+C_{2} e^{2 \cdot 0}-3 \cdot 0=C_{1}+C_{2} .
\end{aligned}
$$

To do this, we need to solve the system:

$$
\left\{\begin{array} { c }
{ C _ { 1 } + C _ { 2 } = 4 } \\
{ - 2 C _ { 1 } + 2 C _ { 2 } - 3 = 1 }
\end{array} \rightarrow \left\{\begin{array} { l }
{ C _ { 2 } = 4 - C _ { 1 } } \\
{ C _ { 2 } = C _ { 1 } + 2 }
\end{array} \rightarrow \left\{\begin{array} { c }
{ C _ { 1 } + 2 = 4 - C _ { 1 } } \\
{ C _ { 2 } = C _ { 1 } + 2 }
\end{array} \rightarrow \left\{\begin{array} { c }
{ C _ { 1 } = 1 } \\
{ C _ { 2 } = C _ { 1 } + 2 }
\end{array} \rightarrow \left\{\begin{array}{l}
C_{1}=1 \\
C_{2}=3 .
\end{array}\right.\right.\right.\right.\right.
$$

Thus, the solution of the initial value problem is $y(x)=e^{-2 x}+3 e^{2 x}-3 x$.
Answer: $y(x)=e^{-2 x}+3 e^{2 x}-3 x$.
Answer provided by https://www.AssignmentExpert.com

