Answer on Question \#69649 - Math - Differential Equations

Question

Find the complete solution of

$$
(D 4-8 D 2+16) y=0
$$

Solution

The equation

$$
\left(D^{4}-8 D^{2}+16\right) y(x)=0
$$

is a linear homogeneous ordinary differential equations with constant coefficients.
To solve this equation we set

$$
y(x)=e^{k x}
$$

Then

$$
D^{4} y(x)=k^{4} e^{k x}, \quad D^{2} y(x)=k^{2} e^{k x}
$$

Therefore we obtain the characteristic equation is of the form

$$
k^{4}-8 k^{2}+16=0
$$

or

$$
\left(k^{2}-4\right)^{2}=0
$$

The roots of the characteristic equation are

$$
k_{1}=2, k_{2}=2, k_{3}=-2, k_{4}=-2 .
$$

Finally, the complete solution of the differential equation is given by

$$
y(x)=C_{1} e^{2 x}+C_{2} x e^{2 x}+C_{3} e^{-2 x}+C_{4} x e^{-2 x}
$$

where $C_{1}, C_{2}, C_{3}, C_{4}$ are arbitrary real constants.
Answer: $y(x)=C_{1} e^{2 x}+C_{2} x e^{2 x}+C_{3} e^{-2 x}+C_{4} x e^{-2 x}$.

