Answer on Question \#69647 - Math - Differential Equations

Question

Find a particular solution of

$$
\frac{d y}{d x}+2 y=2 x^{2}+3
$$

Solution

Method 1

It's a first order linear differential equation, hence it has the following form:

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

with $P(x)=2$ and $Q(x)=2 x^{2}+3$.
The associated homogeneous differential equation is

$$
\begin{gathered}
\frac{d y}{d x}+P(x) y=0 \\
\frac{d y}{d x}+2 y=0
\end{gathered}
$$

The characteristic equation is

$$
\lambda+2=0 .
$$

Its root is

$$
\lambda=-2 .
$$

The solution of the homogeneous equation is

$$
\begin{equation*}
y_{h}=c_{1} e^{-2 x} \tag{1}
\end{equation*}
$$

The right-hand side of the differential equation

$$
\begin{equation*}
\frac{d y}{d x}+2 y=2 x^{2}+3 \tag{2}
\end{equation*}
$$

is a second degree polynomial that does not coincide with (1), therefore, a particular solution of
(2) can be found in the following way:

$$
\begin{align*}
& y_{p}=a x^{2}+b x+c,(3) \\
& y_{p}^{\prime}=2 a x+b \tag{4}
\end{align*}
$$

Substituting formulae (3), (4) into the differential equation (2) one gets

$$
\begin{gathered}
\frac{d y_{p}}{d x}+2 y_{p}=2 x^{2}+3 \\
2 a x+b+2\left(a x^{2}+b x+c\right)=2 x^{2}+3 \\
2 a x^{2}+(2 b+2 a) x+(b+2 c)=2 x^{2}+3
\end{gathered}
$$

Equating coefficients before the like terms one gets the system

$$
\begin{gathered}
\left\{\begin{array}{c}
2 a=2 \\
2 b+2 a=0 \\
b+2 c=3
\end{array}\right. \\
\left\{\begin{array}{c}
a=1 \\
b=-a \\
c=\frac{3-b}{2}
\end{array}\right. \\
\left\{\begin{array}{c}
a=1 \\
b=-1 \\
c=2
\end{array}\right.
\end{gathered}
$$

Thus, a particular solution of (2) is

$$
y_{p}=a x^{2}+b x+c=x^{2}-x+2
$$

Method 2

A particular solution can be found by means of the general solution of the differential equation.
The first way
is application of an auxiliary function.
Let

$$
y=u v
$$

where $u=u(x)$ and $v=v(x)$ are the auxiliary functions.
Then

$$
\frac{d y}{d x}=\frac{d u}{d x} v+u \frac{d v}{d x} .
$$

So we have

$$
\frac{d u}{d x} v+u \frac{d v}{d x}+2 u v=2 x^{2}+3
$$

or

$$
\begin{equation*}
\frac{d u}{d x} v+u\left(\frac{d v}{d x}+2 v\right)=2 x^{2}+3 \tag{1}
\end{equation*}
$$

Since one of the auxiliary functions can be chosen arbitrarily, let's choose a function v such that it will satisfy the condition:

$$
\frac{d v}{d x}+2 v=0
$$

So we have

$$
\frac{d v}{d x}+2 v=0
$$

or

$$
\frac{d v}{d x}=-2 v
$$

It's a separable equation which can be easily integrated:

$$
\begin{gathered}
\int \frac{d v}{v}=-2 \int d x \\
\ln |v|=-2 x \\
v=e^{-2 x}
\end{gathered}
$$

Substitute the expression for the function v into equation (1):

$$
\frac{d u}{d x} e^{-2 x}=2 x^{2}+3
$$

or

$$
\frac{d u}{d x}=\left(2 x^{2}+3\right) e^{2 x}
$$

It's a separable equation so we can integrate it:

$$
\int d u=\int\left(2 x^{2}+3\right) e^{2 x} d x
$$

To calculate the second integral we shall use the formula for integration by parts:

$$
\int u d v=u v-\int v d u
$$

Let

$$
u=2 x^{2}+3 \text { and } d v=e^{2 x} d x
$$

then

$$
d u=4 x d x ; \quad v=\frac{1}{2} e^{2 x}
$$

Using the formula for integration by parts, we have

$$
\int\left(2 x^{2}+3\right) e^{2 x} d x=\frac{\left(2 x^{2}+3\right)}{2} e^{2 x}-2 \int x e^{2 x} d x
$$

This integral still contains a product of functions. So we shall use the formula for integration by parts again. This time we choose

$$
u=x \text { and } d v=e^{2 x} d x
$$

then

$$
d u=d x ; \quad v=\frac{1}{2} e^{2 x}
$$

So

$$
\begin{gathered}
\int\left(2 x^{2}+3\right) e^{2 x} d x=\frac{\left(2 x^{2}+3\right)}{2} e^{2 x}-2 \int x e^{2 x} d x= \\
=\frac{\left(2 x^{2}+3\right)}{2} e^{2 x}-2\left(\frac{x}{2} e^{2 x}-\frac{1}{2} \int e^{2 x} d x\right)=\frac{\left(2 x^{2}+3\right)}{2} e^{2 x}-x e^{2 x}+\frac{1}{2} e^{2 x}+C= \\
=\left(x^{2}-x+2\right) e^{2 x}+C
\end{gathered}
$$

where C is an integration constant.

So we get the following auxiliary function:

$$
u=\left(x^{2}-x+2\right) e^{2 x}+C .
$$

After the back substitution we have the general solution of the given equation:

$$
y=x^{2}-x+2+C e^{-2 x}
$$

where C is arbitrary real constant.
A particular solution can be obtained if in (2) we set C to be equal to a certain number. For example, if $C=0$, then $y_{p}=x^{2}-x+2$ will be a particular solution.

The second way

is using an integrating factor

$$
\mu(x)=e^{\int P(x) d x} .
$$

The solution is then commonly written as

$$
y=\frac{1}{\mu(x)} \int \mu(x) Q(x) d x
$$

Determine the integrating factor:

$$
\mu(x)=e^{2 \int d x}=e^{2 x} .
$$

Then the solution is

$$
y=e^{-2 x} \int\left(2 x^{2}+3\right) e^{2 x} d x=e^{-2 x}\left(\left(x^{2}-x+2\right) e^{2 x}+C\right)=x^{2}-x+2+C e^{-2 x}
$$

where C is an integration constant.
So the general solution of the given equation is

$$
y=x^{2}-x+2+C e^{-2 x}
$$

A particular solution can be obtained if in (3) we set C to be equal to a certain number. For example, if $C=0$, then $y_{p}=x^{2}-x+2$ will be a particular solution.

Answer: $y_{p}=x^{2}-x+2$.

