Find the particular integral of $\frac{d y}{d x}+y=\cos 3 x$.

Solution

The corresponding homogenous equation is $\frac{d y}{d x}+y=0$. Its characteristic equation is $\mu+1=0$ with the root $\mu=-1$. With respect to it and considering the right part of the equation is $\cos 3 x$, the particular integral is

$$
y_{p}(x)=\alpha \cos 3 x+\beta \sin 3 x
$$

where α and β are the coefficients to be evaluated.
The derivative of the particular integral is

$$
\frac{d y_{p}}{d x}=-3 \alpha \sin 3 x+3 \beta \cos 3 x
$$

Substituting the particular integral and its derivative into the equation we get

$$
\begin{array}{r}
\frac{d y_{p}}{d x}+y_{p}=(-3 \alpha \sin 3 x+3 \beta \cos 3 x)+(\alpha \cos 3 x+\beta \sin 3 x)= \\
=(\alpha+3 \beta) \cos 3 x+(\beta-3 \alpha) \sin 3 x=\cos 3 x .
\end{array}
$$

To evaluate the unknown coefficients we get the system

$$
\begin{aligned}
& \alpha+3 \beta=1 \\
& \beta-3 \alpha=0
\end{aligned}
$$

From the second equation we have $\beta=3 \alpha$, thereby from the first equation we have $\alpha+9 \alpha=1$.
The solution is $\alpha=\frac{1}{10}$, thereby $\beta=3 \cdot \frac{1}{10}=\frac{3}{10}$.
The particular integral is $y_{p}(x)=\frac{1}{10} \cos 3 x+\frac{3}{10} \sin 3 x$.
Answer: $y_{p}(x)=\frac{1}{10} \cos 3 x+\frac{3}{10} \sin 3 x$.

