Answer on Question \#69640 - Math - Differential Equation

Question

Solve the equation $\mathrm{dt} 2 \mathrm{dx} 2-4 \mathrm{t}=0$

Solution

Case 1. If the differential equation is separable, then
$\left(\frac{d t(x)}{d x}\right)^{2}-4 t(x)=0$
Solve for $\frac{d t(x)}{d x}$
$\frac{d t(x)}{d x}=-2 \sqrt{t(x)}$ or $\frac{d t(x)}{d x}=2 \sqrt{t(x)}$
For $\frac{d t(x)}{d x}=-2 \sqrt{t(x)}$
Divide both sides by $2 \sqrt{t(x)}$ and multiply by $d x$:
$\frac{d t(x)}{2 \sqrt{t(x)}}=-d x$
Integrate both sides:
$\int \frac{d t(x)}{2 \sqrt{t(x)}}=-\int d x+c_{1}$, where c_{1} is an integration constant.
Solve for $t(x)$:
$t(x)=\left(-x+c_{1}\right)^{2}$
For $\frac{d t(x)}{d x}=2 \sqrt{t(x)}$
Divide both sides by: $2 \sqrt{t(x)}$ and multiply by $d x$:
$\frac{d t(x)}{2 \sqrt{t(x)}}=d x$
Integrate both sides:
$\int \frac{d t(x)}{2 \sqrt{t(x)}} d x=\int d x+c_{1}$, where c_{1} is an integration constant.
Solve for $t(x)$:
$t(x)=\left(x+c_{1}\right)^{2}$
Answer: $t(x)=\left(-x+c_{1}\right)^{2}$ or $t(x)=\left(x+c_{1}\right)^{2}$.

Case 2. If it is a second order linear differential equation

$$
\frac{d^{2} t}{d x^{2}}-4 t=0
$$

then

$$
\begin{gathered}
\lambda^{2}-4=0 \\
\lambda_{1}=2, \lambda_{2}=-2, \\
t(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}=c_{1} e^{-2 x}+c_{2} e^{2 x},
\end{gathered}
$$

where c_{1} and c_{2} are arbitrary real constants.
Answer: $t(x)=c_{1} e^{-2 x}+c_{2} e^{2 x}$.

