Answer on Question \#69636 - Math - Differential Equations

Question

Find the general solution of the differential equation

$$
y^{\prime}=\frac{y}{x}+\frac{y^{3}}{x^{3}} .
$$

Solution

This is a Bernoulli equation for $n=3$. Divide the equation by y^{3},

$$
\frac{y^{\prime}}{y^{3}}=\frac{1}{x y^{2}}+\frac{1}{x^{3}}
$$

Substitute the function $v=1 / y^{2}$ and its derivative $v^{\prime}=-2\left(y^{\prime} / y^{3}\right)$, into the differential equation above:

$$
-\frac{v^{\prime}}{2}=\frac{v}{x}+\frac{1}{x^{3}} \Rightarrow v^{\prime}=-\frac{2}{x} v-\frac{2}{x^{3}} \Rightarrow v^{\prime}+\frac{2}{x} v=-\frac{2}{x^{3}} .
$$

The last equation is a linear differential equation for the function v. This equation can be solved using the integrating factor method. Multiply the equation by $\mu(x)=e^{\int_{\bar{x}}^{2} d x}=e^{2 \ln x}=x^{2}$, then

$$
\left(x^{2} v\right)^{\prime}=-\frac{2}{x} \Rightarrow x^{2} v=-2 \ln x+C .
$$

We obtain that

$$
v=\frac{-2 \ln x+C}{x^{2}} .
$$

Since $v=1 / y^{2}$,

$$
\frac{1}{y^{2}}=\frac{-2 \ln x+C}{x^{2}} \Rightarrow y= \pm \frac{x}{\sqrt{-2 \ln x+C}}
$$

Answer: $y= \pm \frac{x}{\sqrt{-2 \ln x+C}}$.

