Answer on Question \#69635 - Math - Differential Equations

Question

Solve the differential equation

$$
\left(x^{2}+y^{2}\right) d x-2 x y d y=0 .
$$

Solution

Rewrite the differential equation as

$$
y^{\prime}=\frac{x^{2}+y^{2}}{2 x y} .
$$

This is Euler homogeneous equation, since

$$
f(c x, c y)=\frac{c^{2} x^{2}+c^{2} y^{2}}{2(c x)(c y)}=\frac{c^{2}\left(x^{2}+y^{2}\right)}{c^{2}(2 x y)}=\frac{x^{2}+y^{2}}{2 x y}=f(x, y) .
$$

Since the numerator and denominator are homogeneous "degree 2 " we multiply the right-hand side of the equation by " 1 " in the form $\left(1 / x^{2}\right) /\left(1 / x^{2}\right)$:

$$
y^{\prime}=\frac{x^{2}+y^{2}}{2 x y} \frac{\left(\frac{1}{x^{2}}\right)}{\left(\frac{1}{x^{2}}\right)} \Rightarrow y^{\prime}=\frac{1+\left(\frac{y}{x}\right)^{2}}{2\left(\frac{y}{x}\right)} .
$$

Now we introduce the change of functions $v=y / x$,

$$
y^{\prime}=\frac{1+v^{2}}{2 v} .
$$

Since $y=x v$, then $y^{\prime}=v+x v^{\prime}$, which implies

$$
v+x v^{\prime}=\frac{1+v^{2}}{2 v} \Rightarrow x v^{\prime}=\frac{1+v^{2}}{2 v}-v=\frac{1+v^{2}-2 v^{2}}{2 v}=\frac{1-v^{2}}{2 v} .
$$

We obtained the separable equation

$$
v^{\prime}=\frac{1}{x}\left(\frac{1-v^{2}}{2 v}\right) .
$$

We rewrite and integrate it,

$$
-\frac{2 v}{v^{2}-1} v^{\prime}=\frac{1}{x} \Rightarrow-\int \frac{2 v}{v^{2}-1} d v=\int \frac{1}{x} d x+C_{0} .
$$

The substitution $u=v^{2}(x)-1$ implies $d u=2 v(x) d v=2 v(x) v^{\prime}(x) d x$, so

$$
-\int \frac{d u}{u}=\int \frac{d x}{x}+C_{0} \Rightarrow-\ln u=\ln x+C_{0} \Rightarrow u=\frac{1}{e^{\ln x+C_{0}}} .
$$

But $u=1 / e^{\ln x} e^{C_{0}}$, so denoting $C_{1}=e^{C_{0}}$, then $u=1 /\left(C_{1} x\right)$. So, we get

$$
v^{2}-1=\frac{1}{C_{1} x} \Rightarrow\left(\frac{y}{x}\right)^{2}-1=\frac{1}{C_{1} x} \Rightarrow\left(\frac{y}{x}\right)^{2}=\frac{1+C_{1} x}{C_{1} x} \Rightarrow y^{2}=\frac{1}{C_{1}} x+x^{2}
$$

or

$$
y= \pm \sqrt{C_{2} x+x^{2}} .
$$

If $v=1$, then $y=x, y^{\prime}=1$ and
$y^{\prime}=\frac{x^{2}+y^{2}}{2 x y} \Rightarrow 1=1$,
Which is true, hence $y=x$ is a solution that can be obtained from the general solution (1) if $C_{2}=0$.

If $v=-1$, then $y=-x, y^{\prime}=-1$ and
$y^{\prime}=\frac{x^{2}+y^{2}}{2 x y} \Rightarrow-1=-1$,
which is true, hence $y=-x$ is a solution that can be obtained from the general solution (1) if $C_{2}=0$.

Answer: $y= \pm \sqrt{C_{2} x+x^{2}}$.

