Question

Solve the differential equation

$$
x d y / d x+y=x 3
$$

Solution

Divide both sides of the linear differential equation

$$
x y^{\prime}+y=x^{3}
$$

by x and obtain

$$
y^{\prime}+\frac{y}{x}=x^{2}
$$

Let

$$
\begin{equation*}
y=U V \tag{1}
\end{equation*}
$$

Then

$$
\begin{gathered}
y^{\prime}=U^{\prime} V+V^{\prime} U \\
U^{\prime} V+V^{\prime} U+\frac{U V}{x}=x^{2} \\
U^{\prime} V+U\left(V^{\prime}+\frac{V}{x}\right)=x^{2}
\end{gathered}
$$

If

$$
\begin{equation*}
V^{\prime}+\frac{V}{x}=0, \tag{2}
\end{equation*}
$$

then

$$
\begin{gather*}
U^{\prime} V+U \cdot 0=x^{2} \\
U^{\prime} V=x^{2} \tag{3}
\end{gather*}
$$

Solving the equation (2)

$$
\begin{gathered}
V^{\prime}+\frac{V}{x}=0, \\
\frac{d V}{d x}=-\frac{V}{x^{\prime}} \\
\int \frac{d V}{V}=-\int \frac{d x}{x}, \\
\ln V=\ln \frac{1}{x}+\ln C .
\end{gathered}
$$

Let $\ln C=0$, then

$$
\begin{equation*}
V=\frac{1}{x} . \tag{4}
\end{equation*}
$$

Substituting (4) into equation (3)

$$
U^{\prime} V=x^{2}
$$

one gets

$$
\begin{gather*}
U^{\prime} \frac{1}{x}=x^{2} \\
U^{\prime}=x^{3} \\
U=\int x^{3} d x \\
U=\frac{x^{4}}{4}+C, \tag{5}
\end{gather*}
$$

where C is an integration constant.
Substituting (4) and (5) into (1) one gets the solution of the initial differential equation:

$$
\begin{gathered}
y=U V \Rightarrow y=\left(\frac{x^{4}}{4}+C\right) \cdot \frac{1}{x^{\prime}} \\
y=\frac{x^{3}}{4}+\frac{C}{x} .
\end{gathered}
$$

Answer: $y=\frac{x^{3}}{4}+\frac{C}{x}$.

