Answer on Question \#69631 - Math - Differential Equation

Question

Find the implicit solution of $y^{\prime}=2 x+\frac{y}{5 y^{4}}+1, y(2)=1$.

Solution

We write the equation as

$$
\frac{d y}{d x}=2 x+\frac{y}{5 y^{4}}+1 \rightarrow d y-\left(2 x+\frac{1}{5 y^{3}}+1\right) d x=0
$$

We represent the equation as

$$
P(x, y) d x+Q(x, y) d y=0 .
$$

Here

$$
\frac{\partial P}{\partial y}=-\frac{3}{5 y^{4}} \text { and } \frac{\partial Q}{\partial x}=0, \frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x} .
$$

Consider the quantities

$$
\frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=-\frac{3}{5 y^{4}} \neq f(x) \text { and }-\frac{1}{P}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=\frac{1}{2 x+\frac{1}{5 y^{3}+1}} \cdot \frac{3}{5 y^{4}} \neq g(y)
$$

The equation cannot be reduced to the total differential. Given that the equation is not homogeneous there are no methods for finding an exact solution.

