Answer on Question \#69627 - Math - Differential Equations

Question

Find the general solution of

$$
y^{\prime}+2 y=x^{3} e^{-2 x}
$$

Solution

It's a first order linear differential equation, that is, it has the following form:

$$
y^{\prime}+P(x) y=Q(x)
$$

with $P(x)=2$ and $Q(x)=x^{3} e^{-2 x}$.
It can be integrated in different ways.
The first way is using auxiliary functions.
Let

$$
y=u v,(1)
$$

where $u=u(x)$ and $v=v(x)$ are the auxiliary functions.
Then

$$
y^{\prime}=u^{\prime} v+u v^{\prime}
$$

So we have

$$
u^{\prime} v+u v^{\prime}+2 u v=x^{3} e^{-2 x}
$$

or

$$
\begin{equation*}
u^{\prime} v+u\left(v^{\prime}+2 v\right)=x^{3} e^{-2 x} \tag{2}
\end{equation*}
$$

Since one of the auxiliary functions can be chosen arbitrarily, let a function v be such that it will satisfy the following condition:

$$
v^{\prime}+2 v=0
$$

So we have

$$
\frac{d v}{d x}+2 v=0
$$

or

$$
\frac{d v}{d x}=-2 v
$$

It's a separable equation that can be easily integrated:

$$
\begin{gathered}
\int \frac{d v}{v}=-2 \int d x \\
\ln |v|=-2 x
\end{gathered}
$$

$$
v=e^{-2 x}
$$

Substitute the expression (4) for the function v into equation (2) using (3):

$$
u^{\prime} e^{-2 x}=x^{3} e^{-2 x}
$$

or

$$
\begin{aligned}
u^{\prime} & =x^{3} \\
\frac{d u}{d x} & =x^{3} .
\end{aligned}
$$

It's a separable equation so we can integrate it:

$$
\begin{gathered}
\int d u=\int x^{3} d x \\
u=\frac{1}{4} x^{4}+C
\end{gathered}
$$

where C is an integration constant.
After substitution (4), (5) back into (1) we have a general solution of the given equation:

$$
y=\left(\frac{1}{4} x^{4}+C\right) e^{-2 x}
$$

where C is an integration constant.

The second way is using an integrating factor

$$
\mu(x)=e^{\int P(x) d x}
$$

The solution is then commonly written as

$$
y=\frac{1}{\mu(x)} \int \mu(x) Q(x) d x
$$

Determine the integrating factor:

$$
\mu(x)=e^{2 \int d x}=e^{2 x}
$$

Then the solution is

$$
y=e^{-2 x} \int e^{2 x} x^{3} e^{-2 x} d x=e^{-2 x} \int x^{3} d x=e^{-2 x}\left(\frac{1}{4} x^{4}+C\right)
$$

So the general solution of the given equation is

$$
y=\left(\frac{1}{4} x^{4}+C\right) e^{-2 x}
$$

where C is an integration constant.
Answer: $y=\left(\frac{1}{4} x^{4}+C\right) e^{-2 x}$.

