Answer on question #69109 – Math – Real Analysis

Question

Show that the set $B = \{x \mid x^{(2)} > 2\}$ is non-empty and bounded below. Is it bounded above? Justify

Solution

The set $B = \{x \mid x^{(2)} > 2\}$ contains elements from the interval $(\sqrt{2}; +\infty)$, hence it is not empty.

This set is not bounded below because the statement $x^2 > 2$ means $(x < -\sqrt{2})$ or $(x > \sqrt{2})$, hence *B* is not bounded below because $\inf_{x \in B} B = -\infty$.

The same reason gives that *B* is not bounded above because $\sup_{x \in B} B = +\infty$, so there is no number *C* for which it is true that $\forall x \in B : x < C$.

The set $D = \{x > 0 \mid x^{(2)} > 2\}$ contains elements from the interval $(\sqrt{2}; +\infty)$, hence it is not empty.

This set is bounded below by $\sqrt{2}$, because

$$\forall x \in D: x > \sqrt{2}$$

that follows from the definition of the set *D*.

D is not bounded above because $\sup_{x \in D} D = +\infty$, so there is no number *C* for which it is true that $\forall x \in D : x < C$.

Answer: *B* is not empty. *B* is unbounded. *D* is bounded below by $\sqrt{2}$. *D* is not bounded above.