Answer on Question #69038 – Math – Real Analysis

Question

Check whether the following functions are continuous or not at x = 0. Also, find the nature of discontinuity at that point, if it exists.

(i) $f(x) = \{ [(2-x)^{(1/2)} - (2+x)^{(1/2)}] / [x], x \neq 0 ; 1/\sqrt{2}, x=0$ (ii) $f(x) = \{ x^{(2)+1/3}, x \leq 0 ; -[x^{(3)+1/3}], x>0 \}$

Solution

(i)
$$f(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{2+x}}{x}, & x \neq 0 \\ \frac{1}{\sqrt{2}}, & x = 0 \end{cases}$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} f(x) = -\frac{1}{\sqrt{2}}.$$
$$f(0) = \frac{1}{\sqrt{2}}.$$
Thus, $f(x)$ has a removable discontinuity at $x = 0$.

(ii)
$$f(x) = \begin{cases} x^2 + \frac{1}{3} & x \le 0 \\ -x^3 - \frac{1}{3}, & x > 0 \end{cases}$$
$$\lim_{x \to 0^-} f(x) = \frac{1}{3}, \lim_{x \to 0^+} f(x) = -\frac{1}{3}.$$
Thus, $f(x)$ has a jump discontinuity at $x = 0$ (discontinuity of the first kind).

Answer: (i) discontinuous; a removable discontinuity; **(ii)** discontinuous, a jump discontinuity.

Answer provided by https://www.AssignmentExpert.com