Answer on Question 68975 - Math - Differential Equations

Find the temperature in a bar of length L with both ends insulated and with initial temperature in the rod being $\sin \frac{\pi x}{L}$.

Solution: We consider the initial boundary value problem for the heat equation

$$
\begin{align*}
& u_{t}=a^{2} u_{x x}, \quad x \in(0, L), \quad t>0, \tag{1}\\
& u(0, x)=\sin \frac{\pi x}{L} \tag{2}\\
& u_{x}(t, 0)=u_{x}(t, L)=0 . \tag{3}
\end{align*}
$$

Let us find a special type of non-trivial solutions

$$
\begin{equation*}
v(t, x)=T(t) X(x) \tag{4}
\end{equation*}
$$

of (1) that satisfies conditions (3). We will show that there exists a countable set of such solutions

$$
v_{n}(t, x)=T_{n}(t) X_{n}(x), \quad n=0,1,2, \ldots
$$

Then we will look for a solution u of (1)-(3) in the form

$$
u(t, x)=\sum_{n=0}^{\infty} v_{n}(t, x) .
$$

We substitute (4) into the differential equation (1), and divide by $a^{2} v$. This gives

$$
\frac{T^{\prime}(t)}{a^{2} T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}
$$

The left-hand side of the equality depends only upon t and the righthand one is independent of t. It follows that

$$
\frac{T^{\prime}(t)}{a^{2} T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda
$$

where λ is a constant. Thus $v(t, x)=T(t) X(x)$ is a solution of the heat equation that satisfies boundary conditions (3) if and only if T and X satisfy the ordinary differential equation

$$
\begin{equation*}
T^{\prime}(t)+\lambda a^{2} T(t)=0, \quad t \in(0,+\infty) \tag{5}
\end{equation*}
$$

and the boundary value problem

$$
\begin{align*}
& X^{\prime \prime}(x)+\lambda X(x)=0, \quad x \in(0, L), \tag{6}\\
& X^{\prime}(0)=0, \quad X^{\prime}(L)=0 \tag{7}
\end{align*}
$$

respectively.
The Sturm-Liouville problem (6)-(7) always admits the trivial solution $X=0$, but this is of no use to us. We must find all values of λ
for which there exist non-trivial solutions of (6)-(7). It is possible for non-negative λ only. In fact, if $\lambda<0$, then equation (6) has the general solution

$$
X(x)=C_{1} \sinh (\sqrt{-\lambda} x)+C_{2} \cosh (\sqrt{-\lambda} x) .
$$

From boundary conditions (7) we have

$$
C_{1}=0, \quad C_{2} \sinh (\sqrt{-\lambda} L)=0
$$

Therefore $\sinh (\sqrt{-\lambda} L)=0$, which is impossible for the positive number $\sqrt{-\lambda} L$.

If $\lambda=0$, then there exists a nonzero solution $X_{0}=1$ of (6), (7). For $\lambda>0$ we have $X(x)=C_{1} \cos \sqrt{\lambda} x+C_{2} \sin \sqrt{\lambda} x$. Substituting X into (7) yields

$$
\begin{aligned}
& X^{\prime}(x)=-C_{1} \sqrt{\lambda} \sin \sqrt{\lambda} x+C_{2} \sqrt{\lambda} \cos \sqrt{\lambda} x \\
& X^{\prime}(0)=0 \quad \Rightarrow \quad C_{2}=0 \\
& X^{\prime}(L)=0 \quad \Rightarrow \quad C_{1} \sqrt{\lambda} \sin \sqrt{\lambda} L=0 \quad \Rightarrow \quad \sin \sqrt{\lambda} L=0
\end{aligned}
$$

since both the constants C_{1} and C_{2} cannot be zero simultaneously. Then X need not be identically zero if and only if $\sin \sqrt{\lambda} L=0$, that is, if

$$
\lambda_{n}=\frac{\pi^{2} n^{2}}{L^{2}}, \quad n=1,2, \ldots
$$

These values are called the eigenvalues of the problem. The corresponding solutions are

$$
X_{n}(x)=\cos \frac{\pi n x}{L}, \quad n=1,2, \ldots
$$

Next, we can solve equation (5) for all eigenvalues:

$$
\begin{aligned}
& T_{0}^{\prime}=0 \quad \Rightarrow \quad T_{0}(t)=A_{0} \\
& T_{n}^{\prime}+\frac{a^{2} \pi^{2} n^{2}}{L^{2}} T_{n}=0 \quad \Rightarrow \quad T_{n}(t)=A_{n} e^{-\frac{a^{2} \pi^{2} n^{2}}{L^{2}} t}
\end{aligned}
$$

We attempt to represent the solution u of (1)-(3) as an infinite series

$$
u(t, x)=A_{0}+\sum_{n=1}^{\infty} A_{n} e^{-\frac{a^{2} \pi^{2} n^{2}}{L^{2}} t} \cos \frac{\pi n x}{L}
$$

We need to determine the coefficients A_{n} in such a way that initial condition (2) holds. We have

$$
u(0, x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{\pi n x}{L}=\sin \frac{\pi x}{L} .
$$

The last series is called a Fourier series of function $\sin \frac{\pi x}{L}$. Moreover,

$$
\left.\begin{array}{rl}
& A_{0}=\frac{1}{L} \int_{0}^{L} \sin \frac{\pi x}{L} d x, \quad A_{n}=\frac{2}{L} \int_{0}^{L} \sin \frac{\pi x}{L} \cos \frac{\pi n x}{L} d x . \\
A_{0}= & \int_{0}^{L} \sin \frac{\pi x}{L} d x=\frac{L}{\pi} \int_{0}^{L} \sin \frac{\pi x}{L} d\left(\frac{\pi x}{L}\right)=-\left.\frac{L}{\pi} \cos \frac{\pi x}{L}\right|_{0} ^{L}=\frac{2 L}{\pi} . \\
A_{n}= & \int_{0}^{L} \sin \frac{\pi x}{L} \cos \frac{\pi n x}{L} d x=\frac{1}{2} \int_{0}^{L}\left(\sin \frac{\pi(n+1) x}{L}+\sin \frac{\pi(n-1) x}{L}\right) d x \\
= & \frac{1}{2}\left(\frac{L}{\pi(n+1)} \int_{0}^{L} \sin \frac{\pi(n+1) x}{L} d\left(\frac{\pi(n+1) x}{L}\right)\right. \\
+ & \left.\frac{L}{\pi(n-1)} \int_{0}^{L} \sin \frac{\pi(n-1) x}{L} d\left(\frac{\pi(n-1) x}{L}\right)\right) \\
= & \frac{1}{2}\left(-\left.\frac{L}{\pi(n+1)} \cos \frac{\pi(n+1) x}{L}\right|_{0} ^{L}-\left.\frac{L}{\pi(n-1)} \cos \frac{\pi(n-1) x}{L}\right|_{0} ^{L}\right.
\end{array}\right) .
$$

Answer:

$$
u(t, x)=\frac{2 L}{\pi}+\sum_{k=1}^{\infty} \frac{8 k L}{\pi\left(4 k^{2}-1\right)} e^{-\frac{4 a^{2} \pi^{2} k^{2}}{L^{2}} t} \cos \frac{2 \pi k x}{L} .
$$

