Answer on Question \#68322 - Math - Differential Equations

Question

(1) Obtain the solution for the initial value problem $d y / d x+(\cot x) y=x \csc x, y(p i / 2)=1$
(2) Solve the differential equation $d y / d x=x\left(1+y^{\wedge} 2\right)$
(3) Solve the differential equation $d y / d x+(\cot x) y=x \csc x$

Solution

Q1. We have the initial value problem

$$
\frac{d y}{d x}+(\cot x) y=x \csc x \quad y\left(\frac{\pi}{2}\right)=1
$$

First we find the general solution of the equation, i.e. solve the problem

$$
\frac{d y}{d x}+(\cot x) y=x \csc x
$$

This equation is a linear equation of the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

where

$$
P(x)=\cot x, \quad Q(x)=x \csc x
$$

To solve this differential equation, we need to multiply both sides by the integrating factor $I(x)$, where

$$
|I(x)|=e^{\int P(x) d x}=e^{\int \cot x d x}
$$

and integrate both sides.
Find integral

$$
\int \cot x d x=\int \frac{\cos x}{\sin x} d x=\int \frac{d(\sin x)}{\sin x}=\ln |\sin x|+C
$$

We are looking for a particular integrating factor, so we take $\mathrm{C}=0$. Then we get

$$
|I(x)|=e^{\ln |\sin x|}=|\sin x|
$$

Multiply both sides of the equation by $I(x)=\sin x$

$$
\sin x \frac{d y}{d x}+(\sin x \cdot \cot x) y=x(\csc x \cdot \sin x)
$$

or

$$
\sin x \frac{d y}{d x}+(\cos x) y=x
$$

and so we can rewrite the equation as

$$
\frac{d}{d x}(y \cdot \sin x)=x
$$

Integrate both sides of this equation we get the general solution

$$
\int \frac{d}{d x}(y \cdot \sin x) d x=\int x d x \Rightarrow y \cdot \sin x=\frac{x^{2}}{2}+c
$$

where c is constant defined by the initial conditions.
Now we find c and solve the initial value problem. Substitute the initial condition

$$
y\left(\frac{\pi}{2}\right)=1
$$

into the general solution:

$$
1 \cdot \sin \left(\frac{\pi}{2}\right)=\frac{1}{2}\left(\frac{\pi}{2}\right)^{2}+c
$$

or

$$
1=\frac{\pi^{2}}{8}+c \Rightarrow c=1-\frac{\pi^{2}}{8}
$$

Then we obtain the solution for the initial value problem

$$
y \cdot \sin x=\frac{x^{2}}{2}+1-\frac{\pi^{2}}{8}
$$

or dividing both sides by $\sin x$,

$$
y=\left(\frac{x^{2}}{2}+1-\frac{\pi^{2}}{8}\right) \csc x
$$

Answer: the solution for the initial value problem is

$$
y=\left(\frac{x^{2}}{2}+1-\frac{\pi^{2}}{8}\right) \csc x
$$

Q2. We have the equation

$$
\frac{d y}{d x}=x\left(1+y^{2}\right)
$$

This equation is the separable equation, i.e. it is a first-order differential equation in which the expression for $d y / d x$ can be written in the form

$$
\frac{d y}{d x}=f(x) g(y)
$$

For this problem

$$
f(x)=x, \quad g(y)=\left(1+y^{2}\right)
$$

To solve this equation we rewrite it in the differential form

$$
d y=x\left(1+y^{2}\right) d x
$$

or, dividing both sides by $1+y^{2}$,

$$
\frac{d y}{\left(1+y^{2}\right)}=x d x
$$

Then we integrate both sides of this equation:

$$
\int \frac{d y}{\left(1+y^{2}\right)}=\int x d x
$$

We get

$$
\arctan y=\frac{x^{2}}{2}+c
$$

or

$$
y=\tan \left(\frac{x^{2}}{2}+c\right)
$$

where c is constant
Answer: The solution of the given differential equation is

$$
y=\tan \left(\frac{x^{2}}{2}+c\right)
$$

Q3. We have the equation

$$
\frac{d y}{d x}+(\cot x) y=x \csc x
$$

The general solution of this equation we obtained by solving problem 1:

$$
y \cdot \sin x=\frac{x^{2}}{2}+c
$$

or dividing both sides by $\sin x$,

$$
y=\left(\frac{x^{2}}{2}+c\right) \csc x
$$

Answer: The solution of the given differential equation is

$$
y=\left(\frac{x^{2}}{2}+c\right) \csc x
$$

