Answer on Question \#68293 - Math - Calculus

Question

Obtain the partial differential equation by eliminating the arbitrary constant from the relation

$$
u=\frac{x^{2}}{2 a^{2}}+\frac{y^{2}}{2 b^{2}}
$$

Solution

$$
\begin{gathered}
p=\frac{\partial u}{\partial x}=\frac{x}{a^{2}} \rightarrow a^{2}=\frac{x}{p} \\
q=\frac{\partial u}{\partial y}=\frac{y}{b^{2}} \rightarrow b^{2}=\frac{y}{q} \\
u=\frac{x^{2}}{2 a^{2}}+\frac{y^{2}}{2 b^{2}}=\left[a^{2}=\frac{x}{p}, b^{2}=\frac{y}{q}\right]=\frac{x^{2}}{2 x} p+\frac{y^{2}}{2 y} q=\frac{p x}{2}+\frac{q y}{2} \\
2 u=p x+q y
\end{gathered}
$$

$$
2 u=x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}
$$

Answer: $2 u=x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$.

