Answer on Question \#68040 - Math - Calculus

Question

Find the area bounded by the curve $y=4 x-x^{\wedge} 2$ and the line $x=0$ and $y=4$.

Solution

First, find the points of intersection of $y=4 x-x^{2}$ and $y=4$:
$4 x-x^{2}=4$,
$x^{2}-4 x+4=0$,
$(x-2)^{2}=0$,
$x=2$,
so
$y=4 x-x^{2}$ and $y=4$ intersect at the point $(2,4)$.
The lines $x=0$ and $y=4$ intersect at the point $(0,4)$.
The curve $y=4 x-x^{2}$ and the line $x=0$ intersect at the point (0,0), because

$$
y(0)=4 \cdot 0-0^{2}=0
$$

The line $y=4$ is higher than $y=4 x-x^{2}$, so the integrand will be as follows:

$$
4-4 x+x^{2}
$$

So the area can be calculated as

$$
\int_{0}^{2}\left(4-4 x+x^{2}\right) d x=\left.\left(4 x-2 x^{2}+\frac{x^{3}}{3}\right)\right|_{0} ^{2}=8-8+\frac{8}{3}=\frac{8}{3}
$$

Answer: $\frac{8}{3}$.

