Answer on Question #68040 - Math - Calculus

Question

Find the area bounded by the curve $y=4x-x^2$ and the line x=0 and y=4.

Solution

First, find the points of intersection of $y = 4x - x^2$ and y = 4: $4x - x^2 = 4$, $x^2 - 4x + 4 = 0$, $(x - 2)^2 = 0$, x = 2, so $y = 4x - x^2$ and y = 4 intersect at the point (2, 4). The lines x = 0 and y = 4 intersect at the point (0, 4). The curve $y = 4x - x^2$ and the line x = 0 intersect at the point (0, 0), because $y(0) = 4 \cdot 0 - 0^2 = 0$. The line y = 4 is higher than $y = 4x - x^2$, so the integrand will be as follows: $4 - 4x + x^2$. So the area can be calculated as $\int_0^2 (4 - 4x + x^2) dx = (4x - 2x^2 + \frac{x^3}{3}) \Big|_0^2 = 8 - 8 + \frac{8}{3} = \frac{8}{3}.$

Answer: $\frac{8}{3}$.

Answer provided by https://www.AssignmentExpert.com