Answer on Question \#67547 - Math - Calculus

Question

The projection map defined on ($R^{\wedge} 2, d$) where d is the usual metric is continuous. Is it true?

Solution

Yes, it is true.

Consider the projection map $p r_{x}:{ }^{2} \rightarrow \quad, p r_{x}(x, y)=x$ for each $(x, y) \in{ }^{2}$ (similarly for y). We show that $p r_{x}:{ }^{2} \rightarrow$ is continuous. Consider any point $p_{0}=\left(x_{0}, y_{0}\right) \in{ }^{2}$. Let $\varepsilon>0$. Put $\delta=\varepsilon$. Then for each $p=(x, y) \in{ }^{2}$ such that $d\left(p, p_{0}\right)<\delta$ we have that

$$
\left|p r_{x}(p)-p r_{x}\left(p_{0}\right)\right|=\left|x-x_{0}\right| \leq d\left(p, p_{0}\right)<\delta=\varepsilon .
$$

This means that the projection map $p r_{x}:{ }^{2} \rightarrow$ is continuous at p_{0}. Then that projection map is continuous.

