Answer on Question #67007 - Math - Calculus

Question

Is the function $sin \ x \ cos \ x$ monotonic on $[-\pi/2, \pi/2]$? Justify your answer.

Solution

Using the representation $f(x) = \sin x \cos x = \frac{1}{2} \sin 2x$ we may conclude that f(x) is not monotonic on $[-\pi/2, \pi/2]$. The function f(x) decreases on $(-\frac{\pi}{2}, -\frac{\pi}{4})$ and on $(\frac{\pi}{4}, \frac{\pi}{2})$; the function f(x) increases on $(-\frac{\pi}{4}, \frac{\pi}{4})$.

Applying Calculus the derivative of the function is

$$f'(x) = \frac{1}{2} \cdot 2 \cdot \cos 2x = \cos 2x.$$

Let us find x satisfying f'(x) > 0. Namely,

 $\cos 2x > 0,$

$$\begin{aligned} &-\frac{\pi}{2} + 2\pi n < 2x < \frac{\pi}{2} + 2\pi n, \ n \in N, \\ &-\frac{\pi}{4} + \pi n < x < \frac{\pi}{4} + \pi n, \ n \in N. \end{aligned}$$

The solution of the inequality f'(x) > 0 on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is the interval $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$. It means the function f(x) increases on $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$. The solution of the inequality f'(x) < 0 on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ consists of the intervals $\left(-\frac{\pi}{2}, -\frac{\pi}{4}\right)$ and $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. Therefore, the function f(x) decreases on $\left(-\frac{\pi}{2}, -\frac{\pi}{4}\right)$ and on $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.

Answer: No.