Answer on Question \#67007 - Math - Calculus

Question

Is the function $\sin x \cos x$ monotonic on $[-\pi / 2, \pi / 2]$? Justify your answer.

Solution

Using the representation $f(x)=\sin x \cos x=\frac{1}{2} \sin 2 x$ we may conclude that $f(x)$ is not monotonic on $[-\pi / 2, \pi / 2]$. The function $f(x)$ decreases on $\left(-\frac{\pi}{2},-\frac{\pi}{4}\right)$ and on $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$; the function $f(x)$ increases on $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$.

Applying Calculus the derivative of the function is

$$
f^{\prime}(x)=\frac{1}{2} \cdot 2 \cdot \cos 2 x=\cos 2 x
$$

Let us find x satisfying $f^{\prime}(x)>0$. Namely,

$$
\begin{gathered}
\cos 2 x>0 \\
-\frac{\pi}{2}+2 \pi n<2 x<\frac{\pi}{2}+2 \pi n, \quad n \in N \\
-\frac{\pi}{4}+\pi n<x<\frac{\pi}{4}+\pi n, \quad n \in N .
\end{gathered}
$$

The solution of the inequality $f^{\prime}(x)>0$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is the interval $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$. It means the function $f(x)$ increases on $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$. The solution of the inequality $f^{\prime}(x)<0$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ consists of the intervals $\left(-\frac{\pi}{2},-\frac{\pi}{4}\right)$ and $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. Therefore, the function $f(x)$ decreases on $\left(-\frac{\pi}{2},-\frac{\pi}{4}\right)$ and on $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.

Answer: No.

