Answer on Question \#66925 - Math - Calculus

Question

Check the continuity of
$\{x+1, x$ is less than 1$\}$
$f(x)=\{0, x$ is greater than 1 and x is less than 2$\}$
$\{2-x, x$ is greater than 2$\}$

Solution

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
x+1, x<1 ; \\
0,1<x<2 ; \\
2-x, x>2 ;
\end{array}\right. \\
& f(1-0)=\lim _{x \rightarrow 1^{-}} f(x)=2, \\
& f(1+0)=\lim _{x \rightarrow 1^{+}} f(x)=0, \\
& f(2-0)=\lim _{x \rightarrow 2^{-}} f(x)=0, \\
& f(2+0)=\lim _{x \rightarrow 2^{+}} f(x)=0 .
\end{aligned}
$$

A value of $f(1)$ is not defined.
There exist finite one-sided limits $f(1-0)$ and $f(1+0)$, but the relations

$$
\lim _{x \rightarrow 1-0} f(x)=\lim _{x \rightarrow 1+0} f(x)=f(1)
$$

do not hold, then 1 is a point of discontinuity of the first kind for a function $f(x)$. A value of $f(2)$ is not defined. If

$$
f(2+0)=f(2-0) \neq f(2)
$$

then 2 is a point of removable discontinuity.
Thus, the function $f(x)$ is not continuous.

